# 제 3 편 토 공

제 1 장 토공 일반

제 2 장 비탈면

제 3 장 연약지반

# 제 1 장 토 공 일 반

# 1.1 지반조사

## 1.1.1 지반조사인 목적

- (1) 지반조사는 합리적이고 경제적인 설계를 위한 자료수집 단계이다.
- (2) 건설공사 대상지반의 지충분포와 지반공학적 성질을 파악하는데 목적이 있다.

#### 1.1.2 단계별 지반조사

- (1) 지반조사는 계획에서부터 유지관리까지 각 단계마다 실시한다.
- (2) 노선선정 단계에서는 개략적인 지형 및 지질조사 실시한다.
- (3) 설계·시공·계획 단계에서는 상세지반조사 및 수리수문 조시를 실시한다.
- (4) 노선선정 단계에서는 공법선정, 공사기간, 공사비용 등을 결정하기 위한 예비조사를 실시한다.
- (5) 시공단계에서는 확인조사와 미조사지역에 대한 추가조사를 실시한다.

## 1.1.3 조사방법 및 범위

- (1) 구조물의 종류나 규모에 따라 지반조사의 방법과 범위을 결정한다.
- (2) 구조물의 용도나 중요성 고려하여 적합한 조사방법을 선정한다.
- (3) 공사의 종류, 구조물의 규모, 지반조건, 주변환경 등에 따라 조사방법 및 범위를 결정한다.
- (4) 현장조사는 현장답사 및 지표지질조사, 지구물리탐사, 시추조사, 사운당 그리고 기타 원위치시 험 등이 있다.
- (5) 실내조사는 자료 및 지형분석, 실내시험 등이 있다.

#### 1.1.4 단계별 조사절차

- (1) 계획단계의 조사
  - ① 타당성 및 기본계획단계의 조사단계이다.
  - ② 기존 자료조사 및 현장답사를 통해 활성단층, 불안정 비탈면, 연약지반 등의 분포상태를 조사한다.
  - ③ 중요지역은 사운딩이나 시추조사를 수행한다.
  - ④ 설계단계에서 필요한 지반조사 계획을 수립한다.
- (2) 설계단계의 조사
  - ① 기본설계에서 필요한 구조물의 위치, 규모, 하중조건을 결정할 수 있는 물리탐사, 사운당 및 시추조사와 시험 등을 실시한다.
  - ② 계획단계의 조사보다 조사 빈도를 높여 구체적인 지반 특성치를 결정한다.
  - ③ 실시설계에서 결정되는 구조물 위치나 규모, 설계조건을 확정하기 위해 시추, 사운당, 시굴,

#### 3-1-4 | 제3편 토 공

현장 및 실내시험 등의 실시한다.

- ④ 계획단계에서 미실시 되거나 부족한 부분에 대하여 추가조사를 실시한다.
- (3) 시공단계의 조사
  - ① 시공중의 계측결과가 설계치와 상이한 경우 추가조사 및 시험을 실시한다.
  - ② 설계단계시 민원이나 조사가 수행되지 못한 경우 확인조사를 실시한다.
- (4) 유지관리단계의 조사
  - ① 구조물에 하자가 발생하거나 주변지반의 변화가 예상되는 경우 원인 규명을 위한 조사를 실시한다.
  - ② 시설물의 주변지반이 변형되거나 붕괴가 예상되는 경우 보수보강을 위한 조사를 실시한다.

# 1.1.5 조사항목

- (1) 흙쌓기, 땅깎기가 이루어지는 지역의 지형 특성
- (2) 암반 비탈면의 지질 특성(츙리, 절리, 단츙 듕 방향성)
- (3) 원지반의 공학적 성질(흙, 연암, 풍화도, 균열)
- (4) 원지반의 물성(물리적·역학적 특성과 시간에 따른 변화)
- (5) 지하수 상황

## 1.1.6 지반조사 및 시험계획<sup>1)</sup>

- (1) 흙쌓기 및 땅깎기 구간 조사 및 시험
  - ① 계획노선에 따라 시추조사, 핸드오거 혹은 시험굴조사를 실시하고 필요시 원위치 시험을 시행한다.
  - ② 시추조시는 깎기구간 1개소당 1개소 이상 실시한다.
  - ③ 급경사. 민원 등으로 인한 미시추 구간에 대해서는 물리탐사를 시행한다.
  - ④ 절리, 단층 및 풍화발달 정도를 조사하기 위해서는 절리면 전단시험, 일축압축강도시험, 시추공화상정보시험 등을 실시한다.
  - ⑤ 수로암거 위치는 지반고하 5m까지 실시하고, 연약층이 출현시 연약층 하부까지 시추조사를 실시한다.
  - ⑥ 시추종료 지점에 단충파쇄대 출현시 단충파쇄대를 통과지점까지 조사를 실시한다.
  - ⑦ 포장설계를 위해서는 토질분류 시험, 다짐, CBR 시험을 실시한다.
  - ⑧ 연약지반에 대한 토성시험 및 역학시험을 시행하여 지반의 안정검토 및 처리공법 등을 결정 한다.
  - ⑨ 현장 베인시험은 심도 5m 및 츙이 바뀔 때마다 연속적으로 수행한다.
- (2) 교량기초 및 터널구간 조사 및 시험
  - ① 교량기초 하부에 공동이 예상되는 지역, 시추조사가 불가한 경우 및 지지층의 변화가 심한 곳은 물리 탐사를 실시한다.

- ② 교량기초가 급시면에 위치한 경우 시추공 영상촬영시험을 수행하여 시면안정해석을 실시한다.
- ③ 풍화암층이 깊을 경우라도 교량당 1개소이상 암충을 확인하고 자연시료채취, 코아채취 및 시추공내 수위측정 등 필요한 시험을 실시한다.
- ④ 풍화암츙이 두껍고(소요 말뚝직경의 5배 이상) 대부분의 지지력이 이 츙에서 발휘되는 경우 Triple core barrrel을 사용하여 불교란 시료를 채취한다.
- ⑤ 풍화암 이하의 암반지지 기초의 경우 암반의 일축압축강도가 지지력에 큰 영향을 미치므로 암반에 대한 일축압축강도 및 점하중강도시험을 실시한다.
- ⑥ 직접기초구간은 침하량을 산정할 수 있도록 풍화암 변형계수 또는 탄성계수를 측정한다.
- ⑦ 말뚝기초 두부에 수평변위가 발생하는 경우 궁내재하시험을 실시하여 수평방향반력계수 산 정한다.
- ⑧ 말뚝기초 적용구간에 점토츙이 분포하는 경우 삼축압축시험 및 일축압축시험을 수행하여 교 량구간의 비배수전단강도 및 주변마찰력을 산정한다.
- ⑨ 터널구간 조사위치 및 공수는 전기비저항탐사를 수행하여 저토피, 단층파쇄대 등을 고려하여 결정한다.
- ① 터널구간 내진해석을 위해서는 Cross hole Test를 터널 상하행 입출구부 각각 1 개소이상 시행한다.
- ① Cross hole Test의 시행이 곤란한 경우에는 Down Hole, S-PS검츙, 밀도검츙 등을 대행한다.
- ① 터널구간에서는 골재에 대한 유용암 시험을 실시한다.

#### (3) 토취장 및 골재원 조사 및 시험

- ① 토취장 및 골재원 조사는 토공. 구조물 및 포장용 재료를 확보하기 위해 실시한다.
- ② 토취장 및 사토장의 위치를 지형도(1:50,000)에 표기하고, 매장량 등을 기입한다.
- ③ 토취장, 사토장 및 골재원을 3개소 이상 선정하고, 관련 사군의 인·허가 여부 및 토지 소유 자의 사용슝낙서를 징구하여 결정한다.
- ④ 선정된 토취장에는 시추조사 3개소, 시험굴조사 5개소 이상 실시하여 성토재료로서의 적합 성을 확인한다.
- ⑤ 콘크리트 및 포장용 골재는 궁급원의 위치를 선정하고 가용 매장량을 추정하기 위한 하천골 재원의 조사를 시행한다.
- ⑥ 쇄석 골재도 공급원의 위치를 선정하고 시추조사는 3개소 이상 실시한다.

#### 1.1.7 지반조사 및 시험빈도

#### (1) 위치별 현장조사 빈도

[표 1.1.1] 위치별 현장조사 빈도

| 조      | 사위치 | 조사항목 | 조사빈도                                | 심 도  | 비고         |
|--------|-----|------|-------------------------------------|------|------------|
| 횱      | 일반  | 핸드오거 | 300m                                | 3~5m |            |
| 쌍<br>기 | 구간  | 시추조사 | 수로암거위치 <sup>2)</sup><br>(암반노출지역 제외) | 5m   | SPT : 1m마다 |

| 조사위치 조사항목 |                               | 조사항목                 | 조사빈도                                                                                             | 심 도                                                     | 비고                                 |  |
|-----------|-------------------------------|----------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------|--|
|           | 전드오거 200m                     |                      | 3~5m                                                                                             |                                                         |                                    |  |
|           |                               | 피에조콘                 | 100m                                                                                             | · 필요 깊이까지                                               |                                    |  |
| 許         | O <sub>1</sub> O <sub>1</sub> | 시추조사                 | 200m                                                                                             | · 지지층(풍화암)확인                                            | ·콘관입시험 위치                          |  |
| 강기        | 지반                            | 베인시험                 | 400m                                                                                             | ·불교란시료 채취<br>심도                                         | ·시추조사 위치<br>·Borehole, Field Vane  |  |
|           |                               | 간극수압                 | 200m<br>(1회/CPTu 2회)                                                                             | ·불교란시료 채취<br>심도                                         | ·콘관입시험과 병행시추<br>조사 위치              |  |
|           |                               | 시 험 굴                | 200m                                                                                             | 1 ~2m                                                   |                                    |  |
|           |                               | 시추조사                 |                                                                                                  |                                                         |                                    |  |
| 2         | 강깎기                           | 탄성파탐사<br>또는<br>전기비저항 | · 개소당 1개소 이상<br>(조사등급에 따라<br>조정)                                                                 | ·계획고하 2m                                                | ·SPT : 1m 마다                       |  |
|           | 화상                            |                      |                                                                                                  |                                                         |                                    |  |
|           |                               | 시추조사                 | ·교대 및 교각 마다 1<br>개소                                                                              | ·경암 1m, 연암 3m,<br>풍화암 7m 까지                             | ·SPT: 1m 마다<br>·상·하행선 분리시 모두<br>시행 |  |
|           |                               | 화상정보                 | · 터파기시 사면안정성<br>검토가 필요한 경우                                                                       | · 암반구간                                                  |                                    |  |
| 구 조 물 부   | 조 량                           | 궁내재하                 | · 풍화대가 깊어 직접기<br>초 심도결정시 침하량<br>산정이 필요한 경우<br>· 연약층이 깊어 말뚝기<br>초의 수평방향 변위<br>반력계수 산정이 필요<br>한 경우 | · 충별 (토사,풍화암,<br>암반) 각각 1회                              |                                    |  |
|           |                               | 탄성파탐사<br>또는<br>전기비저항 | · 직접기초 위치의 풍화<br>암 심도가 급변 하는<br>경우<br>· 현장여건상 민원으로<br>시추가 불가한 경우                                 | ·직접기초 예상심도<br>이상 깊이까지                                   | ·교축방향 2개 측선 또는<br>교축 및 교축 직각방향     |  |
|           |                               | 토모그래피                | ·상부구조물에 큰 영향<br>을 미칠 공동 발견시                                                                      | ·직접기초 : 푸팅 폭<br>의 3배 깊이 까지,<br>·말뚝기초: 기초폭의<br>1~3배 깊이까지 |                                    |  |

| 조      | 조사위치 조시                          |       | 조사빈도                                 | 심 도        | 비고                                       |
|--------|----------------------------------|-------|--------------------------------------|------------|------------------------------------------|
|        |                                  | 시추조사  | ·터널 입출구부 각각 2<br>개소 및 300m마다 1<br>개소 | ·계획고하 2m까지 | ·토사충 또는 연약대 등<br>이 존재시 풍화암 또는<br>필요 심도까지 |
|        |                                  | 탄성파탐사 | ·터널 개소당 입출구부<br>필요한 연장               |            | ·Cross Hole Test                         |
| 조      | 조<br>물<br>터널부 <sup>3)</sup><br>부 | 전기비저항 | ·터널 전연장<br>(계획심도 250m미만)             |            |                                          |
|        |                                  | 전자탐사  | · 터널 전연장<br>(계획심도 250m이상)            |            |                                          |
|        |                                  | 암반수압  | ·터널내 용출수산정에<br>필요한 시추 위치             |            |                                          |
|        |                                  | 화상정보  | · 터널 개소당 입출구부<br>각각 2개소              | ·암반구간      | ·절토부 기준 준용                               |
|        | 석 산                              | 사추조사  | 3개소 이상                               | ·필요 깊이까지   |                                          |
| 재<br>료 | 하천<br>골재                         | 시추조사  | 필 요 시                                | ·필요 깊이까지   |                                          |
| 원      |                                  | 시추조사  | 3개소 이상                               | ·필요 깊이까지   |                                          |
|        | 토취장                              | 시 험 굴 | 5개소 이상                               | 1 ~2m      |                                          |

주) 조사빈도 및 심도는 현장여건을 고려하여 변경가능, Boring은 NX 규격으로 시행

#### (2) 땅깎기구간 조사등급 분류기준4)

- ① 인근 지역의 사면 조사, 지표 지질 조사 및 물리탐사 결과에 의해 다음과 같이 지역을 4등 급으로 분류하여 비탈면 붕괴 가능성에 따라 조사를 결정한다.
  - 가. A급 : 경상도 일대 퇴적암 지역 및 사전지표지질조사 결과 지역인근에서 산사태성 대규모 등과가 다수 발생한 지역으로 비탈면의 높이가 20m 이상인 경우
  - 나. B급 : 지역 및 사전지표지질조사결과 지역인근에서 절리방향이 불량하여 표준 사면경사로 시공시 붕괴가 다수 발생되는 지역으로 비탈면의 높이가 20m 이상인 경우
  - 다. C급: 절리면 방향이 불량하여 인근에서 사면 붕괴가 종종 발생되는 지역 및 A, B 등급에 해당하는 지역으로 사면의 높이가 20m 미만인 경우 또는 특별히 안정검토가 필요한 경우
  - 라. D급 : 사면이 안정한 지역으로 소규모의 붕괴 또는 낙석발생이 우려되는 지역 및 단순 확장구간으로 기 노출된 사면으로 절리의 방향 및 거칠기 등을 추정할 수 있는 구간

<sup>3)</sup> 터널부 토질조사 개선방안(설계처-3330, 2009.6.17)

<sup>4)</sup> 절토비탈면 설계변경 최소화를 위한 토질조사 기준 개선(설계처, 2008.06)

# 3-1-8 | 제3편 토 공

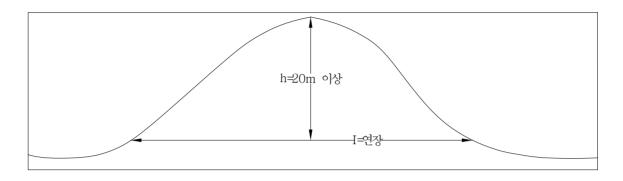
② 추가조사는 본조사 수행후 시추공간의 시험결과가 상이한 경우에 수행한다.③ 사면 조사 항목 및 빈도

[표 1.1.2] 한 개 사면당 조사 항목

| 지열 | 구분<br>지역 개략조사    |                                       | 시추조사 및 현장시험                                                                                                 | 실내시험                                        |
|----|------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| А  | 본<br>조<br>사      | 지표지질,<br>전기비저항<br>또는 탄성파<br>탐사        | ·시추조사 3광(1공에 대하여는 풍화암충을 3중<br>관 샘플러 사용 불교란시료 채취, 시추공 전단<br>강도 시험)<br>·시추공 화상정보 시험(BIPS, ABI 등)              | -                                           |
| 巾  | 추<br>가<br>조<br>사 | -                                     | ·이중관 시료채취기를 이용한 시추조사 1공<br>·시추공 화상정보 시험(BIPS, ABI 등)                                                        | ·일축압축강도 또는<br>점하중시험                         |
| В  | 본<br>조<br>사      | 지표지질,<br>전기비저항<br>또는 탄성파<br>탐사        | ·시추조사 2공(1공에 대하여는 풍화암충을 3중<br>관 샘플러 사용 불교란시료 채취, 시추공 전단<br>강도 시험)<br>·시추공 화상정보 시험(BIPS, ABI 등)              | -                                           |
| 司  | 추<br>가<br>조<br>사 | _                                     | ·이중관 시료채취기를 이용한 시추조사 1공<br>·시추공 화상 정보시험(BIPS, ABI 등)                                                        | ·일축압축강도 또는<br>점하중시험                         |
| С  | 본<br>조<br>사      | 지표지질,<br>전기비저항<br>또는 탄성파<br>탐사        | ·시추조사 2광(1공에 대하여는 풍화암충이 5m<br>이상인 경우 3중관 샘플러 사용 풍화암충 불교<br>란시료채취, 시추공 전단강도 시험)<br>·시추공 화상정보 시험(BIPS, ABI 등) | · 일축압축강도 또는<br>점하중시험<br>· 중요 절리면 전단강도<br>시험 |
| 巾  | 추<br>가<br>조<br>사 | _                                     | ·이중관 시료채취기를 이용한 시추조사 1공<br>·시추공 화상정보시험(BIPS, ABI 등)                                                         | · 일축압축강도 또는<br>점하중시험                        |
| D  | 본<br>조<br>사      | 지표지질,<br>20m 이상 사면<br>탄성파 탐사<br>(굴절법) | ·시추조사 1공(풍화암충이 5m이상인 경우 풍화암충을 3중관 시추기를 이용하여 불료란시료<br>채취)<br>·시추공 화상정보(BIPS, ABI 등) 시험                       | · 일축압축강도 또는<br>점하중시험                        |
| 間  | 추<br>가<br>조<br>사 | _                                     | ·이중관 시료채취기를 이용한 시추조사 1공<br>·시추공 화상정보 시험(BIPS, ABI 등)                                                        | · 일축압축강도 또는<br>점하중시험<br>· 중요 절리면 전단강도<br>시험 |

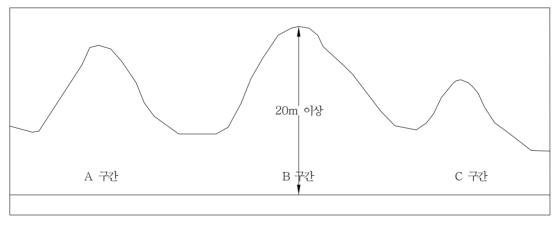
주) 현행 : D급 본조사 수준 (단, 시추공 화상정보시험제외, 시추조사 1공은 절토부 좌,우 2공을 의미)

[표 1.1.3] 시험 항목 빈도


|                    | A⊒          |          | B급          |          | с급            |          | D급                       |            |
|--------------------|-------------|----------|-------------|----------|---------------|----------|--------------------------|------------|
| 구 분                | 본조사         | 추가<br>조사 | 본조사         | 추가<br>조사 | 본조사           | 추가<br>조사 | 본조사                      | 추가<br>조사   |
| 지표지질조사             | 1회          | _        | 1회          | _        | 1회            | _        | 1회                       | _          |
| 전기비저항<br>탄성파탐사     | 1회          | _        | 1회          | _        | 1회            | _        | 1회                       | -          |
| 시추조사               | 3궁          | 1공       | 2궁          | 1공       | 2궁            | 1공       | 1공                       | 1공         |
| 토질시험               | 공당 1회       | _        | 공당 1회       | _        | 공당 1회         | _        | 공당 1회                    | _          |
| 풍화암 불교란시료채취        | 1공          | _        | 1공          | _        | 1공<br>(5m이상)  | _        | 1 <del>강</del><br>(5m이상) | -          |
| 화상정보시험             | 3궁          | 1공       | 2궁          | 1공       | 2궁            | 1공       | 1공                       | 1공         |
| 풍화암<br>시추공전단시험     | 1개소         | _        | 1개소         | _        | 1개소<br>(5m이상) | _        | 1개소<br>(5m이상)            | -          |
| 연암 및 경암<br>절리면전단시험 | 1공당<br>1개소  | _        | 1공당<br>1개소  | _        | 1공당<br>1개소    | _        | -                        | 1공당<br>1개소 |
| 일축압축강도 또는<br>점하중시험 | 약 6m당<br>1회 | _        | 약 6m당<br>1회 | _        | 약 6m당<br>1회   | _        | 약 6m당<br>1회              | -          |
| 풍화내구성지수시험          | 1공당<br>1개소  | _        | 1공당<br>1개소  | _        | 1공당<br>1개소    | _        | 1공당<br>1개소               | -          |
| 팽윤시험               | 1공당<br>1개소  | _        | 1공당<br>1개소  | -        | 1공당<br>1개소    | П        | 1공당<br>1개소               | _          |

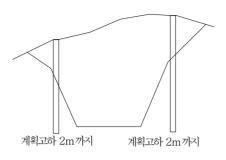
# [표 1.1.4] 시험 항목별 조사 결과

| 시험항목            | 조사결과                      | 비고 |
|-----------------|---------------------------|----|
| 탄성파 또는 전기비저항 탐사 | 암반분포 및 단충 파악              |    |
| 화상정보 시험         | 절리면 방향 및 풍화정도             |    |
| 일축압축강도 시험       | 암의 일축압축강도                 |    |
| 점하중 강도 시험       | 암의 일축압축강도 추정              |    |
| 절리면 전단강도 시험     | 절리면의 점착력 및 마찰각            |    |
| 3중관 샘플러         | 풍화암충 불교란 시료 채취            |    |
| 시추공 전단강도 시험     | 풍화암츙의 전단강도<br>(점착력 및 마찰각) |    |

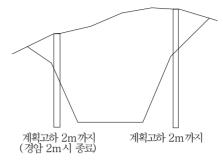

# 3-1-10 | 제3편 토 공

# ④ 대절토부(절취고 20m 이상의 경우) 시추조사 계획 가. 종방향 고려사항 (가) 한 개의 능선인 경우

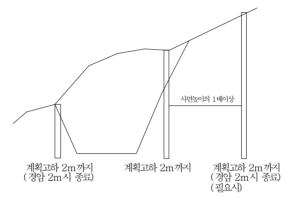



| 연 장<br>항목 | 100m 이하 | 300mº º} | 600m 이하 | 600m 이상 |
|-----------|---------|----------|---------|---------|
| 시추 조사     | 1 배     | 2배       | 2.5배    | 3배      |
| 시추공 화상정보  | 1 배     | 2배       | 2.5배    | 3배      |
| 절리면 전단시험  | 1 배     | 2배       | 2.5배    | 3배      |
| 시추공 전단시험  | 1 배     | 2배       | 2.5배    | 3배      |

# (나) 여러 능선이 같이 있을 경우

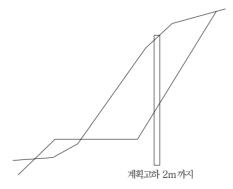



※ 각 늉선의 사면높이에 따라 A급(20m이상), B급(20m미만)으로 구분하여 조사 시행

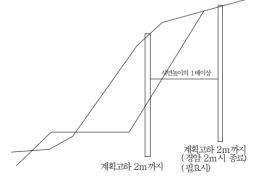

# 나. 횡방향 고려사항 (가) 양쪽 절취



<1-1> 양쪽 깎기면이 20m 이상



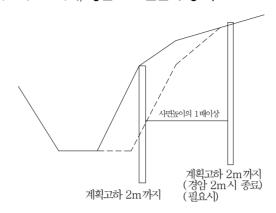

<1-2> ① 한쪽 깎기면이 20m 이상



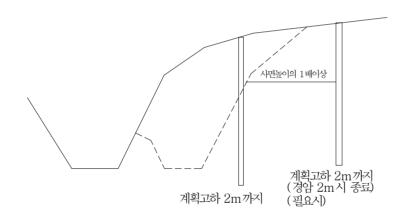

<1-2> ② 한쪽 깎기면이 20m 이상 상부구간 (필요시)

(나) 한쪽 절취: 비탈면 경계부(계획고하 2m까지), 비탈면 경계 상부구간(필요시, 계획고 하 2m까지, 경암 2m 출현시 종료)

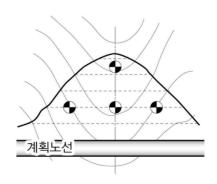



<2-1> 비탈면 경계부(계획고하 2m까지)




<2-2> 비탈면 경계 상부구간 (계획고하 2m까지, 필요시)

# 3-1-12 | 제3편 토 공

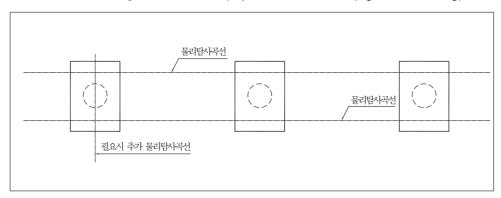

(다) 기존 절토사면 노출시 : 비탈면 경계부(계획고하 2m까지), 비탈면 경계 상부구간 (필요시, 계획고하 2m까지, 경암 2m 출현시 종료)



(라) 등사면 노출시 : 비탈면 경계부(계획고하 2m까지), 비탈면 경계 상부구간 (필요시, 계획고하 2m까지, 경암 2m 출현시 종료)



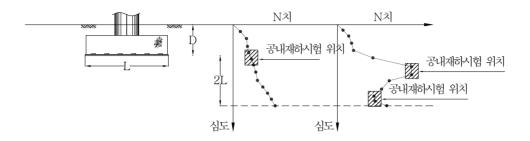
다. 시추방법 고려사항: 입체적인 자료획득(구조적 연약대)을 위한 종·횡방향 배치




- (3) 교량기초 물리탐사 및 공내재하시험 조사기준5)
  - ① 지반에 공동이 존재하지 않는 경우

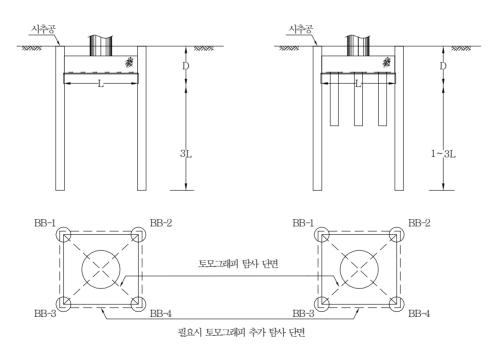
| 기초형식 구 분                                       | 직접기초                                                                                                        | 말뚝기초                                                          |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 급경사지로 터파기시 사면안정<br>검토가 필요한 경우                  | 시추공 영상 [                                                                                                    | 활영 시험                                                         |
| 풍화암 심도가 매우 불규칙하다<br>고 판단되는 경우                  | · 탄성파 탐사 또는 전기비저항<br>탐사 수행<br>· 탄성파 탐사 : 지오폰 간격 3m<br>이하, 음원 3개소 이상에서 수행<br>· 전기비저항 탐사 : 고밀도 2차원<br>영상법 적용  | -                                                             |
| 풍화암 심도가 매우 깊어 심도<br>결정시 침하량이 푸팅심도 결정<br>요소인 경우 | · 궁내재하시험(pressuremeter 시험) 수행<br>· 푸팅 폭의 2배 이내에서 1~2회<br>적용<br>· N치가 점중하는 경우 : 1회<br>· N치의 변화가 매우 큰 경우 : 2회 | -                                                             |
| 말뚝상부가 연약하여 수평방향<br>변위가 크게 발생활 가능성이<br>있는 경우    |                                                                                                             | · 공내재하시험 수행<br>· 수평방향하중이 크게 작용하<br>는 교대하부 지반에 수행하<br>여 Kh값 산정 |

# ② 물리 탐사 측선배치


가. 다수의 푸팅을 조사해야 하는 경우 : 교축방향으로 2회 실시하며 시추조사 위치와 물리 탐사 측선을 가능한 일치시킨다. (단, 필요시 교축직각 방향 추가 탐사수행)



- 나. 1개의 푸팅을 조시해야 하는 경우: 교축 방향 및 교축 직각방향으로 실시 (단, 측선 길이는 푸팅폭(L 또는 B)+1.5D×2 이상 확보)
- ③ 공내재하시험(pressuremeter 시험) 수행 심도 가. 직접기초 예상심도 하부 2L 깊이까지 표준관입 시험치가 점진적으로 증가하는 경우


# 3-1-14 | 제3편 토 공

- → 직접기초 예상심도 직하부에서 실시
- 나. 직접기초 예상심도 하부 2L 이내에서 표준관입 시험치가 급변하는 경우
  - ightarrow 직접기초 하부 2L 이내에서 최소 및 최대 표준관입 시험치를 나타내는 심도에서 실시



# ④ 지반에 공동이 존재하는 경우

| 구분                                                    | 기초       | 형식       | 직접기초                                                             | 말뚝기초                                                                         |
|-------------------------------------------------------|----------|----------|------------------------------------------------------------------|------------------------------------------------------------------------------|
| ·석회암과 같이 인<br>근에 공동이 다                                | 개략<br>조사 | 조사<br>방법 | ·필요시 교축방향으로 공동의<br>항 탐사 적용)                                      | 개략적인 분포를 조사함. (전기비저                                                          |
| 수     출현되는     지       역     또는     시추조               | 수 출현되는 지 | 조사<br>방법 | · 푸팅 외곽에 시추조사를 4개소 시행하고 토모그래피 탐사 수형<br>(탄성파, 전기비저항, 레이다 탐사 이용가능) |                                                                              |
| 지 고는 지구고<br>사시<br>·상부 구조물에 큰<br>영향을 미칠 공동<br>이 발견된 지역 | 정밀<br>조사 | 조사<br>심도 | · 공동 발견된 심도 하부에서<br>기초폭의 3배 이상 심도까<br>지                          | · 주면마찰력이 충분히 발휘되는 경<br>우 : 푸팅폭 깊이 까지<br>· 주면마찰력이 발휘되지 못하는 경<br>우 : 푸팅폭의 3배까지 |



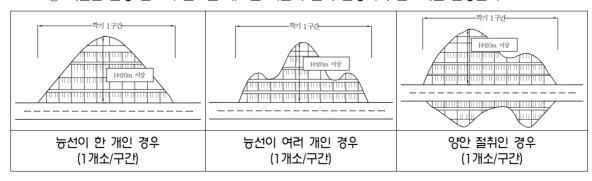
<그림 1.1.1> 토모그래피 탐사 측선 및 깊이

# (4) 조사항목별 실내시험이

① 시추조사

| 시험항목                              | 절토부 | 연약지반        | 터널부        | 교량부            | 비고 |
|-----------------------------------|-----|-------------|------------|----------------|----|
| 함수비시험                             | 0   | 0           | ○(입 · 출구부) | 0              |    |
| 비중시험                              | 0   | 0           | ○(입·출구부)   | 0              |    |
| 체분석시험                             | 0   | 0           | ○(입·출구부)   | 0              |    |
| 입도분석시험                            | 0   | 0           | ○(입·출구부)   | 0              |    |
| 액성·소성 한계시험                        | 0   | 0           |            | 0              |    |
| 일축압축시험                            |     |             |            | 0              |    |
| 직접전단시험                            |     | 0           | 0          |                |    |
|                                   |     | (삼축압축시험불가시) |            |                |    |
| 압밀시험                              |     | 0           |            |                |    |
| 삼축압축시험                            |     | 0           |            | 0              |    |
| 암석시험                              | 0   |             | 0          | (연약층이 깊은 말뚝기초) |    |
| 풍화내구성지수시험                         | 0   |             |            |                |    |
| (slaking durability test)<br>팽윤시험 | 0   |             |            |                |    |
| (swelling test)                   |     |             |            |                |    |

<sup>※</sup> 땅깎기부에 대한 암석시험시 사면안정 해석에 필요한 물성치의 정확도를 확보할 수 있도록 유의한다.


- 가. 시험굴 시험
  - (가) 함수비시험
  - (나) 비중시험
  - (다) 체분석시험
  - (라) 입도분석시험
  - (마) 액성·소성한계시험
  - (바) 다짐시험
  - (사) 실내 CBR시험
- 나. Hand Auger Boring
  - (가) 함수비시험
  - (나) 비중시험
  - (다) 체분석시험
  - (라) 입도분석시험
  - (마) 액성·소성 한계시험
- 다. 골재원 조사
  - (가) 비중시험
  - (나) 흡수율시험
  - (다) 체가름시험

#### 3-1-16 | 제3편 토 공

- (라) 입도시험
- (마) 안정성시험
- (바) #200체 통과량 시험
- (사) 마모율 시험
- (5) 수행예방을 위한 산악지 도로 조사기준기
  - ① 깎기높이 20m이상 비탈면에는 최소 2개소의 시추조사를 실시한다.
  - ② 연장이 긴 경우 200m마다 1회의 시추조사를 추가한다.
  - ③ 시추심도는 부지계획면 아래 2m까지 시추를 실시한다.

#### 1.1.8 시공중 조사

- (1) 비탈면 시공중 지반조사(8)
  - ① 시공중 붕괴 가능성이 있거나 붕괴된 비탈면은 지반조사 및 안정성 분석을 시행한다.
  - ② 시추조사 대상은 20m이상의 땅깎기 비탈면에 대하여 시행한다.
  - ③ 설계시 미시추 구간은 실시설계 조사등급 기준에 의거 추가조시를 실시한다.
  - ④ 설계시 시추 구간의 경우 조사등급보다 한단계 하향등급으로 추가조사를 실시한다.
  - ⑤ 땅깎기 비탈면 추가조사 항목은 다음과 같다.
    - 가. 시추조사(기계기구 설치비 포함)
    - 나. 시추공 영상정보시험(BIPS, ABI 등)
    - 다. 절리면 전단 시험
    - 라. 공내전단시험(풍화암 5m 이상인 경우)
    - 마. 20m이상 비탈면의 경우 전기비저항 탐사 및 탄성파 탐사 추가
    - 바. 풍화민감도 분석(풍화내구성지수시험(slaking durability test), 팽윤시험(swelling test))
  - ⑥ 조사항목은 발주처 주관으로 시공사와 협의하여 선정한다.
  - ⑦ 추가조사 및 안정성 검토비용(계획준비비, 지질해석비(face mapping), 답사비, 종합검토비)중 설계 미반영 항목은 반영하고, 기반영된 항목은 추가 물량만 반영한다.
  - ⑧ 안정성 검토계획, 시행 및 검토단계는 토질기술자와 협의하여 결정한다.
  - ⑨ 비탈면 안정 검토가 필요한 개소는 다음과 같이 결정하여 검토비를 산정한다.



- 7) 수혜예방을 위한 산지부 도로설계기준 개선 (설계처-3394, 2007.11.28)
- 8) 절토비탈면 설계변경 최소화 대책(안) (건설관리처-1841, 2008.6.2)

## (2) 교량기초 시공중 지반조사)

- ① 설계시 지반조사가 미실시된 지점에 대하여 시공전 지반조사 시행한다.
- ② 급경사지 또는 지충변화가 심한 곳은 설계시 시추조사만으로 암반분포상황을 파악하기 곤란하므로 시공시 확인조사를 시행한다.
- ③ 시공중 교량기초 지반조사 항목 및 빈도는 다음과 같다.

| 시엄종류                         | 암반 및 지형특성                                          | 기초<br>형식            | 수량                                                                              |
|------------------------------|----------------------------------------------------|---------------------|---------------------------------------------------------------------------------|
| 시추조사                         | 모든 지반 및 기초                                         | 형식                  | 실시설계시 미 시행한 기초갯수 및 기시행<br>기초갯수의 1/2                                             |
| 일축압축강도 시험                    | 풍화암~경암                                             | 암반<br>근입            | 시추조사 시행시 암반근입말뚝의 주면 및<br>선단부 암반에서 각 1회                                          |
| 점하중시험                        | 풍화암, 연암                                            | 말뚝                  | 시추조사 시행시 일축압축강도 시험을 위한<br>시료채취가 불가한 경우에 암반근입말뚝의<br>주면 및 선단부 암반에서 각 3회           |
| 공내재하시험<br>(pressuremeter 시험) | 풍화암 심도가 매우<br>깊어 심도결정시 침<br>하량이 푸팅심도 결<br>정 요소인 경우 |                     | 시추조사 시행시 직접기초 직하부 풍화암에<br>서 1회                                                  |
| 물리탐사(탄성파탐사<br>또는 전기비저항탐사)    | 급경사지                                               | 직접<br>기초            | 실시설계시 직접기초 부근에서 시행한 측선<br>길이의 1/2                                               |
| 시공영상촬영시험                     | 급경사지의 연암 및<br>보통암                                  | 직접<br>기초            | 급경사지 시추조사 시행시 직접기초위치에<br>서 실시설계시 수행한 평균 공당 조사깊이                                 |
| 토모그래피 탐사                     | 석회암지역과 같이<br>공동이 발견된 경우                            | 직접<br>및<br>말뚝<br>기초 | 실시설계시 수행한 기초갯수의 1/10회 단,<br>기초 1개소당 시추조사 4회 포함(1회조사<br>깊이 : 실시설계시 수행한 평균 조사깊이 ) |

# 1.1.9 흙 및 암반의 분류와 성질

- (1) 흙 및 암석의 분류는 대상지역의 흙 및 암석의 공학적인 성질을 포함한 설계에 필요한 정보를 얻기 위해 실시한다.
- (2) 춁의 분류는 춁의 공학적 분류방법(KS F 2324)인 퉁일 분류법에 따르며, 보조적으로 AASHTO 분류법을 사용할 수 있다.
- (3) 흙 및 암석은 토공작업을 기준으로 흙 및 암석을 토사, 리핑암, 발피암으로 구분한다.
- (4) 표토 및 풍화 잔류토는 토사, 풍화암은 리핑암, 연경암은 발파암에 해당한다.
- (5) 풍화 잔류토와 풍화암 츙의 구분은 표준관입저항치(N치)와 탄성파속도(P파) 듕을 기준으로 구분한다.
- (6) 풍화암과 연암의 구분은 코어회수율(TCR), 암질비(RQD), 탄성파속도, 일축압축강도 등을 기준

으로 하여 리핑암과 발파암으로 규정한다.

- (7) 별도의 시험, 검토 등을 수행하지 않는 경우는 문헌 등에 제시된 굴착 난이도를 기준으로 토사, 리핑암, 발파암을 분류한다.
- (8) 표준관입시험, 불연속면의 발달빈도, 탄성파속도 등은 별개의 고려 조건이 아니므로 분류시 이 요소들을 종합적으로 검토한다.
- (9) 토사, 리핑암 및 발파암의 분류는 시공의 난이도에 따라서 구분한다.
- (10) 최종적인 토츙구분은 시공시 사용할 불도저의 가동능률을 기준으로 판정한다.
- (11) 토사와 리핑암은 표준관입시험(N치) 50타/100mm를 기준으로 구분한다.
- (12) 리핑암과 발파암은 암반의 굴착 특성을 결정하는 불연속면의 발달 빈도(TCR, RQD)와 탄성파속도를 기준으로 구분한다.
- (13) 암반의 절취난이도는 일축압축강도와 절리 등 불연속면의 빈도로 측정하여 결정한다.

## 1.1.10 설계정수

- (1) 토공설계에 사용하는 토질정수는 토질시험 결과를 근거로 결정한다.
- (2) 설계정수 결정에 사용되는 표준관입시험결과는 장비의 효율에 따라 N치가 상이하므로 N치에 대한 보정을 실시하여 사용한다.10)
  - ① 기존 경험식을 사용하여 지반의 물성치 및 지지력을 추정하는 경우 사용 경험식에 맞는 효율을 적용한다.
  - ② 경험식이 보정 안된 N치 사용을 적용하는 경우 표준관입시험결과 보정에서 유효용력 보정 만을 제외한 N<sub>60</sub>을 사용한다.
  - ③ 주상도에는 보정안한 표준관입시험결과와 장비 및 해머종류를 기입하고, 설계조건에 따라 보정하여 사용한다.
  - ④ N치가 100이상이거나 10타를 계속 타입해도 샘플러가 관입되지 않는 경우에 한해 N치 보 정을 제외한다.
  - ⑤ N치 보정은 해머 종류별 효율, 유효상재하중, 롯드 길이, 샘플러 종류, 공경에 대하여 실시 한다.

가. N치 보정식 : N' $_{60}$  = N  $\times$  C<sub>N</sub>  $\times$  n $_{1}$   $\times$  n $_{2}$   $\times$  n $_{3}$   $\times$  n $_{4}$  [식 1.1.1] N $_{60}$  = N  $\times$  n $_{1}$   $\times$  n $_{2}$   $\times$  n $_{3}$   $\times$  n $_{4}$  [식 1.1.2]

여기서,  $N'_{60}$  : 해머효율 60%로 보정한 표준관입시험 결과

 $N_{60}$  : 유효응력 보정만을 제외하고 보정한 표준관입시험 결과

N: 각 장비별 표준관입시험결과

 $C_{
m N}$  : 유효 상재하중에 대한 보정 ( =  $\sqrt[2]{rac{10}{P^{\,\prime}}}$  )

P': 시험위치의 유효상재압력(MPa)

# 나. 해머효율 보정(n1)

n<sub>1</sub> = 해머의 효율 / 60

| 해머종류    | 도넛형<br>(donut) | 안전형<br>(safety) | 자동형<br>(trip) | 개량자동형<br>(modified auto-donut) |
|---------|----------------|-----------------|---------------|--------------------------------|
| 효 율 (%) | 46             | 65              | 54            | 54                             |
| nı      | 0.767          | 1.083           | 0.900         | 0.900                          |

# 다. 롯드 길이 보정(n<sub>2</sub>)

# [표 1.1.5] 롯드 길이에 따른 에너지 효율(Skempton, 1986)

| 롯드 길이 (m)      | 3~4  | 4~6  | 6~10 | 10이상 |
|----------------|------|------|------|------|
| n <sub>2</sub> | 0.75 | 0.85 | 0.95 | 1.00 |

# 라. 샘플러 종류에 따른 보정(n<sub>3</sub>)

# [표 1.1.6] 샘플러 종류에 따른 효율(Skempton, 1986)

| 샘플러 종류         | Liner가 없을 경우 | Liner가 있는 경우 |
|----------------|--------------|--------------|
| n <sub>3</sub> | 1.2          | 1.0          |

## 마. 굴착홀의 직경에 따른 보정(n<sub>4</sub>)

# [표 1.1.7] 굴착홀의 직경에 따른 효율(Skempton, 1986)

| 굴착홀 직경 (㎜)     | 65~115 | 150  | 200  |
|----------------|--------|------|------|
| n <sub>4</sub> | 1.00   | 1.05 | 1.15 |

# [표 1.1.8] 굴착홀의 직경에 따른 효율(Skempton, 1986)

| 구 분 | 코아배럴 비트 외경 (mm) | 굴착홀 직경 (㎜) |
|-----|-----------------|------------|
| EX  | 36.51           | 38.1       |
| AX  | 47.63           | 50.8       |
| BX  | 58.74           | 63.5       |
| NX  | 74.61           | 76.2       |

# 1.1.11 토량 변화율

- (1) 굴착하거나 다짐할 때의 토량변화율은 시험에 의해서 산정한다.
- (2) 소량이거나 부득이한 경우에는 건설표준품셈을 적용한다.

(3) 토량 변화율은 다음과 같이 산출한다.

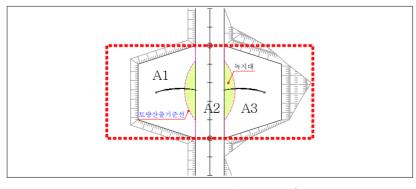
$$L = \frac{$$
 흐트러진토량 $(m^3)$ }  $C = \frac{$  다짐후의토량 $(m^3)$  자연상태의토량 $(m^3)$ 

# 1.2 토공설계

# 1.2.1 토공설계 개요

- (1) 도로의 토공은 차량 통행 공간을 안전하게 유지하고 포장체에 전달되는 교통하중을 충분히 지지하도록 설계한다.
- (2) 토공설계는 땅깎기 또는 흙쌓기 구조물을 축조하는 공사로서 암발파, 비탈면 보호, 연약지반상 흙쌓기, 구조물 뒷채움, 동상방지대책 등을 포함한다.
- (3) 토공은 계절과 강우 등에 영향을 받기 때문에 장기간 그 기능을 발휘하도록 기초지반 및 노상지지력, 비탈면 안정 및 침하 등에 대해 안정해야 한다.
- (4) 비탈면 경사는 지표지질조사, 지반조사 및 실내·현장시험 성과를 이용하여 안정해석을 실시하고 그 결과에 의해 설계해야 한다.
- (5) 비탈면 경사시 안정성 검토는 안정계산에 의한 안전율만으로 판단할 것이 아니라 인접 시설의 안정을 종합적으로 고려하여 설계한다.
- (6) 토공설계에 사용하는 각종 지반정수는 실내 및 현장시험 결과에 근거하여 결정한다.
- (7) 현지상황 등에 의해 실험을 할 수 없거나 개략적인 검토를 하는 경우에는 문헌에서 제시한 토 질정수를 참고 할 수 있다.

#### 1.2.2 토공계획의 흐름


- (1) 토공계획은 도로건설의 흐름을 충분히 고려하여 합리적으로 시행한다.
- (2) 도로건설은 타당성 조사 및 기본설계 단계, 실시설계 단계, 시공 단계, 유지관리단계로 나누어 시행한다.

#### 1.2.3 토공계획의 일반사항

- (1) 노선의 선정
  - ① 경제성, 비용편익, 주행 안정성, 환경보전, 시공성 및 유지관리 등을 고려한 최적의 노선을 선정한다.
  - ② 토공계획은 지형 및 지질, 쌓기 재료 조건과 토공 구조물의 안정성 및 환경, 문화재 등 지 반조건 및 사회적 조건을 고려해야 한다.
  - ③ 산사태 위험지역, 눈사태 위험지역, 지질 위험지역, 문화재 매장지역, 구 광산 지역 등은 공 사비 및 유지관리 변화가 심하므로 주의한다.
  - ④ 노선선정은 충분한 조사와 전문 기술자의 의견을 종합하여 선정한다.
  - ⑤ 노선 검토에 필요한 상세지도 및 지질도의 입수가 곤란한 경우 기존 자료를 효과적으로 이용한다.

## (2) 토량의 배분

- ① 토량 배분은 지형, 지질, 현지상황, 경제성, 시공성 등을 고려하여 결정한다.
- ② 땅깎기나 흙쌓기의 절성토량이 평형이 되도록 계획한다.
- ③ 땅깎기로 발생된 재료는 성상을 파악하여 적합한 흙쌓기 장소로 배분한다.
- ④ 비탈면의 경사도는 비탈면 안정해석에 의해 결정한다.
- ⑤ 토량 배분의 평형이 곤란한 경우, 인접 공사간에 토량의 조정하거나, 공구분할을 재검토하여 가능하면 사토나 순성토가 발생치 않도록 한다.
- ⑥ 토량 계산에 필요한 땅깎기의 단면적은 토사, 리핑암, 발파암으로 구분하여 산출한다.
- ⑦ 토량변화율은 다짐정도에 따라 변동이 크기 때문에 시험시공 등을 통해 확인한다.
- ⑧ 토량 배분시 흙의 운반거리가 가능한 한 짧게 계획한다.
- ⑨ 토공 운반장비는 기종별로 구한 경제적인 흙 운반거리, 공사의 규모, 지형, 지질, 현지의 조건, 공정 등을 종합적으로 검토하여 선정한다.
- ⑩ 무대운반 20m이하, 도저운반 20m~60m, 덤프운반 60m이상으로 한다.
- ① 토적도는 종방향 토량 이동만을 표시하고 휭방향의 이동은 반영되지 않으므로 휭방향의 토량이 누락되지 않도록 주의한다.
- ② 토량의 배분을 원지반 보정으로 하는 경우는 배분된 토량도 원지반의 토량으로 바꾸어 놓아야 한다.
- ③ 노상 및 노체의 상부에는 다짐이 용이하고 압축성이 작은 재료를 배분한다.
- ④ 입경이 큰 전석과 암괴, 소성지수가 높은 점성토 등은 흙쌓기 하부에 넣도록 계획한다.
- ⑤ 횡방향 및 종방향 무대처리토사는 토사→리핑암→발파암 순으로 한다.
- ⑥ 휴게소, 본선영업소 등의 토량산출은 횡단토량 수량산출이 용이하고, 토적도 적용이 가능한 종방향 산출을 적용한다.<sup>[1]</sup>
- ⑰ 휴게소, 본선영업소 등의 운반수량에 대한 거리산정은 종방향 산출을 적용한다.
- ⑧ 휴게소, 본선영업소 등의 토량산출방법은 다음과 같다.
  - 가. 본선구간과 광장구간으로 구분한다.
  - 나. 본선 측점을 기준으로 구간별로 토랑산출 및 토적도 작성
  - 다. 구간내 1차 토공유통 산정
  - 라. 구간별 사토 및 순성토에 대한 2차 토공유동 산정



<그림 1.2.1> 종방향 토량 산출

#### 3-1-22 | 제3편 토 공

- ⑩ 휴게소, 본선영업소 등의 토랑산출 기준선 검토는 다음과 같다.
  - 가, 무대량 산출거리를 고려한 운반거리 적용
  - 나. 토량의 운반거리는 발생토량의 중심간 거리로 산정
  - 다. 종방향 산출시 본선과 광장구간으로 구분
- (3) 고속도로 건설 인허가12)
  - ① 실시설계단계
    - 가. 인허가 최종협의 완료 및 고시 후 인허가 협의자료를 CD로 제작하여 성과품으로 공사 주관부서에 인계한다.
    - 나. 인어가 협의과정에서 추가 요구 또는 보완사항을 수정한다.
  - ② 공사시행단계
    - 가. 실시설계 협의사항을 토대로 공사추진에 필요한 개발제한구역내 행위허가, 지형도면고시, 자연공원점용허가, 휴게소 건축 인허가 등의 후속 인허가 업무자료를 작성한다.
    - 나. 공사중 발생하는 인허가 변경사안에 대하여 협의자료를 작성한다.
    - 다. 고속도로 준공에 따른 인허가 자료를 CD로 제작하여 준공 성과품으로 유지관리부서에 인계한다.
    - 라. 준공전 각 지역별 도로구역 변경사항을 모두 반영한다.
  - ③ 유지관리단계
    - 가. 준공성과품의 인허가 관련 CD를 활용하여 용지경계, 접도구역관리 등 유지관리 업무를 추진한다.
    - 나. 공용중 발생되는 시설개량 및 휴게소 설치 등의 인허가 변경 업무를 수행한다.
    - 다. 유지관리시 발생된 인허가 변경사항을 CD로 제작하여 향후 고속도로 확장 및 추가시설 개량시 활유한다.

#### 1.2.4 흙쌓기

- (1) 노체설계
  - ① 교통하중과 흙쌓기 하중에 의한 변형과 침하가 발생하지 않도록 설계한다.
  - ② 강우, 침투 또는 지진 등의 붕괴 원인에 대한 안정성을 가져야 한다.
  - ③ 침하와 붕괴에 대한 내구성을 갖도록 설계한다.
  - ④ 흙쌓기 구조물은 시공 및 품질관리를 통해 설계하중에 저항하도록 한다.
  - ⑤ 노상은 충분한 지지력을 갖고 변형량이 적어야 한다.
  - ⑥ 노상은 표면수침투에 의한 팽윤과 동상 등에 대하여 내구성을 가져야 한다.
  - ⑦ 흙쌓기부의 기초지반, 흙쌓기 재료의 특성 및 분포를 파악해야 한다.
  - ⑧ 시공단계 초기에 시험시공을 실시하고 필요시 설계나 토량 배분계획 등을 변경한다.
  - ⑨ 현장에서 발생하는 흙은 현장내에서 유용하며 사토가 최소화 되도록 한다.
  - ⑩ 흙쌓기의 시공에서는 토질에 적합한 기계를 사용하여 얇고 균일하게 포설하여 다짐한다.

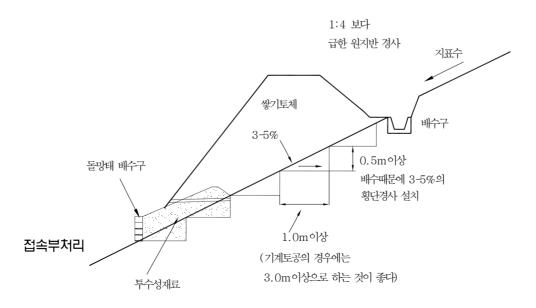
- ② 강우나 기온 등의 영향을 받기 쉬운 세립토(실트, 점성토 등)에 대해서는 토량 배분계획 및 시공계획시 시공하는 계절을 고려한다.
- ③ 흙쌓기의 안정 검토에서는 재해사고나 붕괴가 생길 경우 인접지에 미치는 영향, 복구의 난이도 및 안정계산 결과 등을 종합적으로 검토한다.

#### (2) 노상설계

- ① 노상은 교통하증을 지지하고 포장공사 등을 위한 대형 시공기계가 진입할 수 있어야 한다.
- ② 상부 노상 및 땅깎기부 노상은 프루우프 로올링(proof rolling)을 실시하여 허용 처짐량을 관리하여야 한다.
- ③ 노상재료는 가장 경제적인 재료를 선정하고, 현장내 발생토를 사용하도록 노력한다.
- ④ 노상설계는 노상재료의 품질 및 다짐규정에 따른다.
- ⑤ 노상의 구성 및 재료의 선정은 공사 초기 시험시공에 의해 결정한다.
- ⑥ 노상의 두께는 1000㎜를 표준으로 한다.
- ⑦ 원지반을 땅깎기하여 노상을 형성하는 경우 원지반의 재료가 노상재료 기준에 적합할 경우 직접 노상으로 활용할 수 있다.
- ⑧ 노상재료 기준에 적합하지 않을 경우 소요 CBR을 기준으로 일정두께를 치환한다.
- ⑨ 상부 노상면의 횡단경사는 포장면과 동일한 경사로 한다.

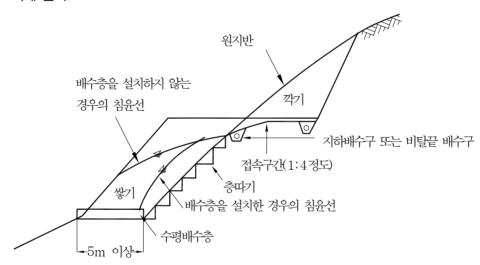
#### (3) 흙쌓기 비탈면 표준구성

- ① 흙쌓기 비탈면은 비탈면 경사의 선정, 소단의 설치, 식생토의 필요성, 비탈면 전압방법, 비탈면 배수처리 등의 기본적 사항을 충분히 검토한 후 설계한다.
- ② 비탈면 높이는 원지반 조건, 지형조건, 쌓기재료의 특성, 주변 환경조건, 경제적인 여건을 고려하여 결정한다.
- ③ 일반적으로 최대높이는 10m 전후로 하고 안정해석와 제반 여건을 고려한 후에 더 높게 쌓을 수 있다.
- ④ 비탈면 경사는 원지반의 형상 및 강도, 쌓기 재료의 형상 및 강도 등을 고려하여 비탈면 안정해석을 수행하여 결정한다.
- ⑤ 경사를 변경하고자 하는 경우에는 안정성을 재검토한다.
- ⑥ 비탈면 높이가 10m 미만인 경우에는 비탈면 표준경사 및 소단에서 제시하는 표준경사를 적용할 수 있다.
- ⑦ 흙쌓기 비탈면 경사는 쌓기 재료의 종류, 비탈면 높이에 따라 다음과 같은 표준경사를 적용한다.


| 쌓기재료                         | 비탈면 높이<br>(m) | 비탈면 상하부에 고정<br>시설물이 없는 경우<br>(도로, 철도 등) | 비탈면 상하부에 고정<br>시설물이 있는 경우<br>(주택, 건물 등) |
|------------------------------|---------------|-----------------------------------------|-----------------------------------------|
| 입도분포가 좋은                     | 0~5           | 1:1.5                                   | 1:1.5                                   |
| 양질의 모래, 모래자갈                 | 5~10          | 1:1.8                                   | 1:1.8~1:2.0                             |
| 암괴, 암버력                      | 10초과          | 별도 검토                                   | 별도 검토                                   |
|                              | 0~5           | 1:1.8                                   | 1:1.8                                   |
| 입도분포가 나쁜 모래,<br>점토질 사질토, 점성토 | 5~10          | 1:1.8~1:2.0                             | 1:2.0                                   |
|                              | 10초과          | 별도 검토                                   | 별도 검토                                   |

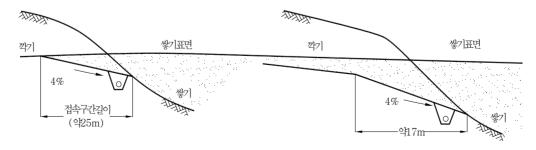
[표 1.2.1] 쌓기비탈면의 표준경사

- 주) 1) 상기 표는 기초지반의 지지력이 충분한 경우에 적용함.
  - 2) 비탈면높이는 비탈어깨에서 비탈끝까지 수직높이임
    - ⑧ 표준경사와 다른 경우 또는 높이가 10m 를 초과한 경우는 별도의 비탈면 안정해석을 통하여 경사를 결정한다.
    - ⑨ 비탈면높이가 5m 이상인 비탈면에서는 비탈면 유지관리를 위한 점검, 배수시설의 설치공간 으로 활용하기 위하여 소단을 설치한다.
    - ⑩ 비탈면 중간에 5~10m 높이에 폭 1~3m의 소단을 설치한다.
    - ① 장비진입 등과 같은 작업공간의 확보가 필요한 경우에는 소단폭을 여건에 맞게 조정할 수 있다.

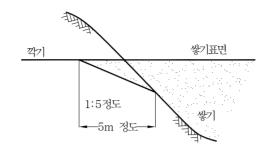

#### (4) 경사지반 흙쌓기

- ① 경사가 1:4보다 급한 원지반 위에 쌓기를 하는 경우에는 원지반 표면에 충따기를 실시한다.
- ② 충따기는 원지반과 쌓기지반과의 밀착을 도모하여 쌓기 토체의 변형 및 활동을 방지한다.




<그림 1.2.2> 비탈면 흙쌓기의 충따기

- ③ 경사지반상 흙쌓기와 기초지반과의 경계부에는 침투수가 발생하여 토체의 활동을 일으킬 수 있으므로 배수구를 설치하여 지표수를 배수한다.
- ④ 츙따기면에는 시공중의 배수를 위하여 3~5%경사를 준다.
- ⑤ 기초지반에 용수가 있는 경우에는 원지반에 접한 흙쌓기 부분에 투수성의 재료를 사용하거 나 배수춤을 설치한다.
- ⑥ 비탈끝에는 흙쌓기가 붕괴되지 않도록 돌쌓기 등을 설치한다.
- ⑦ 토사 충따기 높이는 500mm이상, 폭은 1000mm 이상으로 하고, 기계 토광시에는 3000mm이상 을 확보한다.
- ⑧ 암석 충따기 깊이는 암표면으로부터 수직으로 최소 400㎜ 이상을 확보한다.
- ⑨ 편절·편성 구간에서는 땅깎기 단부에서 흙쌓기부 노상 저면의 깊이까지 깎고, 1:4 정도의 경사로 땅깎기부 노상 저면에 접속시킨다.
- ① 편절·편성 경계부 구간에서는 단차가 발생하기 쉬우므로 접속구간을 두어 점진적으로 경사 지게 한다.



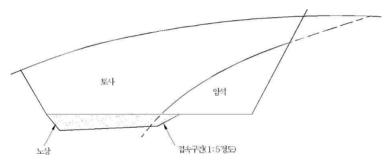

<그림 1.2.3> 편절·편성 구간 츙따기 및 배수처리

① 깎기·쌓기 경계구간의 접속구간 길이는 25m로 하며, 땅깎기 지반이 발파암인 경우 접속길이를 5m로 한다.



(a)땅깎기부 노상에 치환을 있을 경우 (b)땅깎기부 노상에 치환을 있을 경우




(C) 땅깎기부 노상이 암반인 경우

<그림 1.2.4> 깎기·쌓기 경계부에서 접속부처리

# 1.2.5 땅깎기

#### (1) 땅깎기구간 노상설계

- ① 땅깎기부 노상이 암석인 경우 굴착면을 노상 마무리면(토공기면)으로 한다.
- ② 굴삭후 약화될 염려가 있는 암석은 충분한 풍화 대책을 강구한다.
- ③ 원지반 재료가 상부노상의 품질을 만족하는 경우는 원지반을 세밀히 다짐하여 사용한다.
- ④ 원지반의 토질이 다르고, 필요로 하는 노상 두께가 다른 경우 및 편절편성에는 접속구간을 설치한다.



<그림 1.2.5> 원지반의 토질이 다른 경우의 접속구간 설치

- ⑤ 땅깎기 노상은 토질조사 결과 등을 참고로 계획하고, 시공시 시험시공 등을 실시하여 최종 적인 노상구성을 결정한다.
- ⑥ 원지반이 경암으로 굴삭이 곤란하고, 굴삭 연장이 긴 경우는 현지의 상황에 따라 토공 마무리 면을 변경할 수 있다.
- ⑦ 이암과 같은 파쇄되기 쉬운 암석은 굴삭 후의 건습 반복에 의해 약화되기 쉬우므로 노상 마무리 후 신속히 포장한다.

# (2) 땅깎기 비탈면 표준구성

- ① 땅깎기 비탈면 경사는 장기적인 안정성과 지속적인 유지관리를 감안하여 결정한다.
- ② 지반조사 및 시험성과, 코어회수율(TCR)과 암질지수(RQD), 불연속면의 발달방향과 특성, 풍화정도 등을 고려하여 구간별 안정성 분석을 실시하고 그 결과에 의해서 비탈면 경사를 결정한다.
- ③ 비탈면에 대한 정보가 부족한 경우는 표준경사 및 소단기준에 제시한 표준경사를 적용하고 시공단계에서 재검토하도록 시방서 등에 명시한다.

- ④ 붕괴성 요인을 가진 비탈면에서는 별도로 안정성 검토를 실시하여 비탈면 경사를 결정한다.
- ⑤ 암반비탈면의 경우는 지표지질조사 및 시추조사에 의해 파악된 절리의 방향성 및 발달상태에 따라 안정해석을 실시하여 비탈면 경사를 결정한다.

[표 1.2.2] 토사 깎기 비탈면 표준경사

| 토 질 조 건          |                                   | 비탈면<br>높이(m) | 경 사           | 비고               |  |
|------------------|-----------------------------------|--------------|---------------|------------------|--|
|                  | 모 래                               |              | 1:1.5 이상      | SW, SP           |  |
|                  | 밀실한 것                             | 5 이하         | 1:0.8 ~ 1:1.0 |                  |  |
|                  | 글론인 것                             | 5~10         | 1:1.0 ~ 1:1.2 | CNA CD           |  |
| 사 질 토<br>        | 밀실하지 않고                           | 5 이하         | 1:1.0 ~ 1:1.2 | SM, SP           |  |
|                  | 입도분포가 나쁨                          | 5~10         | 1:1.2 ~ 1:1.5 |                  |  |
|                  | 밀실하고 입도분포가                        | 10 이하        | 1:0.8 ~ 1:1.0 |                  |  |
| 자갈 또는            | 좋음                                | 10~15        | 1:1.0 ~ 1:1.2 | CNA CC           |  |
|                  | 암괴 섞인<br>사질토 밀실하지 않거나<br>입도분포가 나쁨 |              | 1:1.0 ~ 1:1.2 | SM, SC           |  |
| 1                |                                   |              | 1:1.2 ~ 1:1.5 |                  |  |
| 점 성 토            |                                   | 0~10         | 1:0.8 ~ 1:1.2 | ML,MH,CL,CH      |  |
| 암괴 또는 호박돌 섞인 점성토 |                                   | 5 이하         | 1:1.0 ~ 1:1.2 | CM CC            |  |
|                  |                                   | 5~10         | 1:1.2 ~ 1:1.5 | GM, GC           |  |
|                  | 풍화암                               | _            | 1:1.0 ~ 1:1.2 | 시편이 형성되지<br>않는 암 |  |

- 주) 1) 실트는 점성토로 간주. 표에 표시한 토질 이 외에 대해서는 별도로 고려한다.
  - 2) 위 표의 경사는 소단을 포함하지 않는 단일 비탈면의 경사이다.

[표 1.2.3] 암반 깎기 비탈면 표준경사

|                                   | 암반 파               | 암반 파쇄 상태           |                |                 |                    |                                  |  |
|-----------------------------------|--------------------|--------------------|----------------|-----------------|--------------------|----------------------------------|--|
| 암반 구분<br>(굴착난이도)                  | NX시추시(BX)          |                    | ] 굴 착<br>  난이도 | 경 사             | 소단 설치              | 비고                               |  |
| (2 12 12)                         | TCR(%)             | RQD(%)             |                |                 |                    |                                  |  |
| 풍화암 또는<br>연·경암으로 파쇄가<br>극심한 경우    | 20% 이하<br>(5% 이하)  | 10 %이하             | 리핑암            | 1:1.0<br>~1:1.2 | H=5m<br>마다<br>1m폭  | *최하단기준 매20m<br>마다 3m소단설치         |  |
| 7141 741010 7                     | 20~40%<br>(10~30%) | 10~25%<br>(0~10%)  | 발파암<br>(연암)    | 1:0.8<br>~1:1.0 | H=10m<br>마다        | *발파암과 리핑암 시<br>이에는 소단을 설치        |  |
| 강한 풍화암으로<br>파쇄가 거의 없는<br>경우와 대부분의 | 40~60%<br>(30~50%) | 25~50%<br>(10~40%) | 발파암<br>(보통암)   | 1:0.7           | 1~2m폭              | 하지 않음<br>*소단사이에 토사와<br>리핑구분선이 발생 |  |
| 연.경암                              | 60% 이상<br>(50%이상)  | 50% 이상<br>(40%이상)  | 발파암<br>(경암)    | 1:0.5           | H=20m<br>마다<br>3m폭 | 시 많은쪽 비탈면<br>경사를 적용              |  |

#### 3-1-28 | 제3편 토 공

- ⑥ 깎기 비탈면의 높이가 10m 이상인 경우, 비탈면 유지관리, 배수시설 설치를 위해 소단을 설치하고. 비탈면 5~20m 높이마다 폭은 1~3m의 소단을 설치한다.
- ⑦ 소단은 비탈면 전체의 높이, 지반의 종류 및 침식작용에 대한 안정성, 소단에 설치되는 배수시설 등을 고려하여 소단 설치 높이와 폭을 조정할 수 있다.
- ⑧ 비탈면 높이에 관계없이 투수츙과 불투수츙과의 경계에는 필요에 따라 종방향으로 일정한 높이에 소단을 설치하며 소단의 횏단기울기는 10.0%로 한다.
- ⑨ 발파암반 하부에 두꺼운 충의 리핑암이 나타나면 상부 발파암도 하부 리핑암에 준하여 비탈 면 경사를 적용한다.
- ① 소단과 소단사이에 토사와 리핑암 구분선이 발생할 경우, 많은 쪽의 비탈면 경사 적용하며 미관 및 현장 시공여건을 고려하여 조정 설치할 수 있다.

#### (3) 붕괴성 요인을 갖는 지질의 비탈면 경사

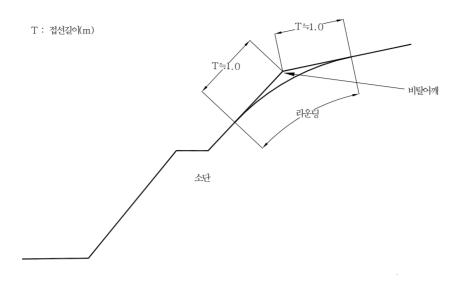
- ① 붕괴 위험성이 높은 지역은 반드시 토질조사 또는 지질조사를 시행하여 비탈면 안정 검토후, 비탈면 경사를 결정한다.
- ② 붕적토(collouvium)는 중력에 의해 퇴적된 지층 특성을 감안하여 적정 비탈면 기울기를 결정한다.

| 지하수조건                   | 경 사         |
|-------------------------|-------------|
| 강우시에도 지하수위가 설계고보다 낮은 경우 | 1:1.2       |
| 강우시만 지하수위가 설계고보다 높아질 경우 | 1:1.5       |
| 상시 지하수위가 설계고보다 높은 경우    | 1:1.8~1:2.0 |

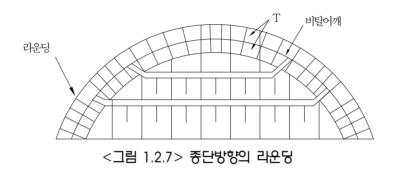
[표 1.2.4] 붕적토의 적정 비탈면 기울기

#### (4) 땅깎기 비탈면 모따기

- ① 땅깎기 비탈면 상단이나 양단부는 원지반과 비탈면의 경계부위가 불안정하여 식생의 정착이 어렵고 침식을 받기 쉬우므로 모따기를 실시한다.
- ② 비탈면 모따기는 원지반과 비탈면의 경계를 중심으로 상하 방향으로 접선장 1.0m 범위에 실시하며, 필요시 지반상태, 미관 등을 고려하여 조정한다.


#### (5) 비탈면 라운딩

- ① 땅깎기 비탈면의 어깨 및 양단부는 원칙적으로 라운딩을 하도록 하고, 그 형상은 매끄러운 원형으로 한다.
- ② 땅깎기 비탈면의 어깨나 양단부는 침식을 받기 쉬우므로 침식방지, 식생의 정착 및 경관의 측면에서 라운딩하는 것이 바람직하다.
- ③ 비탈 어깨의 라운딩은 상하 방향으로 접선장 1.0m 정도로 한다.
- ④ 휴게소나 인터체인지 내 등 경관을 중시하는 비탈면은 별도로 고려할 필요가 있으며, 다음 식을 기준으로 한다.

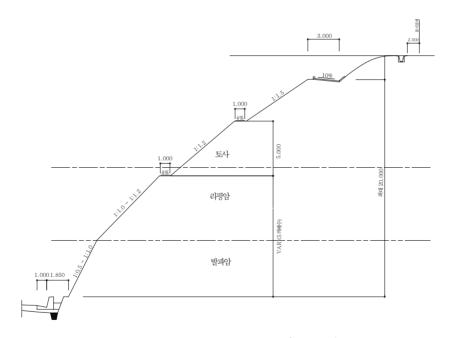

$$T = \frac{a}{3}$$
 [식 1.2.1]

여기서, T: 접선 길이(m),

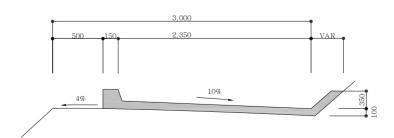
a : 비탈면 최대 경사길이(m)



<그림 1.2.6> 라운딩의 범위




#### (6) 표면수 및 용출수 처리


- ① 표면수 및 용출수는 비탈면의 세굴 및 붕괴를 초래할 수 있으므로 이에 대한 용출수 처리대 책을 설계에 반영한다.
- ② 비탈면 상부의 자연 경사면으로부터 표면수 유입이 예상되는 구간은 비탈면 상단에 산미루 축구 등을 설치하여 비탈면의 세굴을 방지한다.
- ③ 지하수 침투 등에 의해 용출수가 예상되는 경우에는 맹암거, 유공관 등에 의한 비탈면 배수처리 계획을 수립한다.
- ④ 소단배수로의 경우 월류 및 침투가 발생하지 않도록 배수로의 경사와 규모를 결정한다.
- ⑤ 용출수처리 방법은 지반의 종류, 예상 수량 등을 고려하여 결정하며, 충적층과 붕적층은 표면처리공법, 풍화토 및 암반에는 수평 배수공을 실시한다.
- ⑥ 수평 배수공은 지하수의 배수를 용이하도록 수평하향으로 약 5°의 경사를 유지하고, 용출 량이 많은 배수공 단부는 돌망태나 콘크리트벽을 설치한다.
- ⑦ 한랭지에서는 지표면 부근에서 동결하여 용수의 배출을 저해할 수 있으므로 유공관 단부의 매설 심도나 종말처리 위치, 방법 등에 대해서 검토한다.

#### (7) 대깎기 비탈면

- ① 20m이상의 대깎기 비탈면은 비탈면 전체의 지질이 비균질하고, 단층 등의 연약대가 많으므로 지질, 지하수 상황 등을 조사하여 설계한다.
- ② 대깎기 비탈면구간에 단층 등의 연약대가 추정되는 경우 시추조사 외에 탄성파 탐사 등의물리탐사를 실시한다.
- ③ 대깎기 비탈면은 시공중 설계 변경이 발생하지 않도록 시공성 및 안정성 등을 고려하여 설계한다.
- ④ 비탈면 최소화를 위해 옹벽 등을 적용하는 경우, 현장조건, 환경대책, 유지관리면 등을 감안 하여 경제적인 방법을 결정한다.
- ⑤ 대깎기 비탈면에서는 수직 높이 20m마다 폭 3m의 소단을 설치한다.
- ⑥ 풍화암 구간에서는 높이 5.0m마다 소단을 설치하고, 최상부 소단에서 리핑암과 토사의 경계까지 2.5m이하일 경우는 리핑암과 토사의 경계에만 소단을 설치하며, 2.5m이상일 경우는 최상부 소단과 리핑암과 토사의 경계에 소단을 추가 설치한다.13)



<그림 1.2.8> 대깎기 비탈면 횡단도14)



<그림 1.2.9> 소단의 횡단면15)

- 13) 대절토부 소단폭원 검토 (설일 16210-89, 1994.06.16)
- 14) 토공 및 기하구조 표준도 (한국도로공사, 2008.11.20)

# 1.2.6 암쌓기

- (1) 암쌓기 재료의 최대치수는 600㎜ 이하로 하며, 시험시공을 통하여 최대 입경을 조정할 수 있다.
- (2) 풍화암이나 이암, 셰일, 실트스톤, 천매암, 편암 등 암석의 역학적 특성상 쉽게 부서지거나 반복 수침시 연약해지는 암버력의 최대치수는 300㎜ 이하로 한다.
- (3) 암버력은 노체 완성면 600mm 하부까지만 사용하며, 노체의 상부 600mm는 Filter층 역할을 할수 있는 입상 재료 또는 소일시멘트 중간층 등을 설치한다.
- (4) 노체의 상부 600mm가 Filter층으로 시공되어도 노상토와의 입도분포를 상호 비교하여 적정량의 공극채움재를 사용한다.
- (5) 암버력은 입경 600mm 이하에서 양호한 입도분포(well graded) 상태를 가져야 한다.
- (6) 암버력 다짐시 1층 마무리 두께가 600㎜인 경우는 반드시 진동다짐 장비를 이용한다.
- (7) 암쌓기 다짐은 암성토 시공지침을 따른다.
- (8) 기시공된 성토츙 위에 암성토를 실시하는 경우, 기시공된 표면의 중심에서 외측으로 1:12 정도의 경사로 다짐을 하고 배수가 원활이 되도록 한다.
- (9) 암거, 종·황배수관 및 구조물 상부 600㎜ 이내에서는 암성토를 금지한다.
- (10) 춁쌓기 비탈면에 암버력이 노출되지 않도록 양질의 토사로 1m 이상 덮어 식생이 가능하도록 조치한다.
- (11) 말뚝박기를 할 지점, 편절편성부, 절성경계부, 향후 건축물 설치부는 암성토를 지양한다.

# 1.3 암발파

# 1.3.1 발파설계 개요

- (1) 노천발파는 자유면을 형성이 용이하여 다양한 발파설계가 가능하나 발파에 의한 환경피해가 발생할 수 있으므로 유의한다.
- (2) 발파에 의한 소음, 진동, 비석 등 환경공해가 발생함에 따라 각종 민원의 발생을 사전에 예방하기 위한 발파공법을 선정한다.
- (3) 현장조사를 기초로 하여 설계지역의 보안물건에 대한 발파영향권 분석을 실시하여 영향여부를 평가하고, 저감대책 방안을 수립한다.
- (4) 선정된 발파공법은 평면도와 횡단면도로 구분하여 제시하고, 해당 발파공법별로 표준 발파패 턴 설계도를 설계도면에 포함하여 제시한다.
- (5) 암파쇄 굴착공법은 암반강도와 특성을 감안하여 시공성과 경제성을 감안하여, 대형브레이커 기계굴착, 유압파쇄, 전력파암공법 등을 비교 검토하여 선정한다.

#### 1.3.2 암발파 현장조사<sup>16)</sup>

(1) 암발파 영향이 미칠 것으로 예상되는 보안물건에 대하여 조시한다.

<sup>15)</sup> 절성토 비탈면 소단측구 개선 검토 (건설관리처-1665, 2007.06.19)

<sup>16)</sup> 육상부 암발파 설계 및 계측적용기준 검토 (설계처 527, 2007.02.23)

- (2) 현장조사시 다음과 같은 사항을 기입하여야 한다.
  - ① 건물과 구조물의 용도, 거주 및 문화재 지정 여부
  - ② 건물과 구조물의 구조형태, 노후정도, 균열발생 상태 등
  - ③ 건물과 구조물의 기초 및 지반상태
  - ④ 건물내의 특수 시설물에 대한 용도 및 기종
  - ⑤ 가축의 종류 및 사육 두수 등
  - ⑥ 기타 발파작업으로 인한 피해 영향이 예상되는 시설물

# 1.3.3 발파 소음·진동 규제기준

(1) 발파에 대한 규제기준이 없으므로 환경부 소음·진동 규제법의 발파 소음·진동 규제기준(제29조의 2제3항 관련)을 적용한다.

[표 1.3.1] 생활소음·진동의 규제기준 (소음·진동 규제법 시행규칙 제20조의 3 관련) <개정 2007. 12. 31>

[표 1.3.1] 생활소음 규제기준 (단위 : dB(A))

|                       | 대 상 지 역                                                     |            | 시 간 별                                 | 아침(05:00~08:00) | 주간            | 심야            |
|-----------------------|-------------------------------------------------------------|------------|---------------------------------------|-----------------|---------------|---------------|
|                       | 네 6 시 즉                                                     | 소 음 원      |                                       | 저녁(18:00~22:00) | (08:00~18:00) | (22:00~05:00) |
|                       | 주거지역, 녹지지역, 준                                               |            | 옥외설치                                  | 70 이하           | 80 이하         | 60 이하         |
| 2                     | 도시지역중 취락지구                                                  | 확성기        | 옥내에서 옥외로                              |                 |               |               |
| 0                     | 및 운동·휴양지구, 자연                                               | 소 음        | 소음이 나오는                               | 50 이하           | 55 이하         | 45 이하         |
| 0                     | 환경보전지역, 기타 지                                                |            | 경우                                    |                 |               |               |
| 8                     | 역안에 소재한 학교·병                                                |            | · · · · · · · · · · · · · · · · · · · | 50 이하           | 55 이하         | 45 이하         |
| 년<br>12               | 원·궁궁도서관                                                     | 공          | 사 장                                   | 65 이하           | 70 이하         | 55 이하         |
| 월                     |                                                             |            | 옥외설치                                  | 70 이하           | 80 이하         | 60 이하         |
| 31                    |                                                             | 확성기        | 옥내에서 옥외로                              |                 |               |               |
| 일                     | 기타지역                                                        | 소 음        | 소음이 나오는                               | 60 이하           | 65 이하         | 55 이하         |
| 까                     | 714717                                                      |            | 경우                                    |                 |               |               |
| 지                     |                                                             | 공장시업장      |                                       | 60 이하           | 65 이하         | 55 이하         |
|                       |                                                             | 공 사 장      |                                       | 70 이하           | 75 이하         | 55 이하         |
|                       | <br> 주거지역, 녹지지역, 준                                          |            | 옥외설치                                  | 70 이하           | 80 이하         | 60 이하         |
| 2 0 0                 | 도시지역중 취락지구<br>및 운동·휴양지구, 자연<br>환경보전지역, 기타 지<br>역안에 소재한 학교·병 | 확성기<br>소 음 | 옥내에서 옥외로<br>소음이 나오는<br>경우             | 50 이하           | 55 이하         | 45 이하         |
| 9                     |                                                             | 7          | ·<br>당장사업장                            | 50 이하           | 55 이하         | 45 이하         |
| 년                     | 원·공공도서관                                                     | 공          | 사 장                                   | 90 olpł         | 65 이하         | 50 이하         |
| 1<br>월<br>1<br>일<br>부 |                                                             |            | 옥외설치                                  | 70 이하           | 80 이하         | 60 이하         |
|                       | 기타지역                                                        | 확성기<br>소 음 | 옥내에서 옥외로<br>소음이 나오는<br>경우             | 60 olpł         | 65 이하         | 55 이하         |
| 터                     |                                                             | ₹          | · 당사업장                                | 60 이하           | 65 이하         | 55 이하         |
|                       |                                                             | 공          | 사 장                                   | 65 이하           | 70 이하         | 50 이하         |

- 비고 : 1. 소음의 측정방법과 평가단위는 「환경분야 시험·검사 등에 관한 법률」제6조 1항 제2호에 따른 환경 오염공정시험기준에서 정하는 바에 따른다.
  - 2. 대상지역의 구분은 「국토의 계획 및 이용에 관한 법률」에 의한다.
  - 3. 규제기준치는 생활소음의 영향이 미치는 대상지역을 기준으로 하여 적용한다.
  - 4. 실외에 설치한 확성기의 사유은 1회 3분 이내로 하여야 하고, 15분 이상의 간격을 두어야 한다.
  - 5. 공사장의 소음규제기준은 주간의 경우 특정공사의 사전신고대상 기계·장비를 사용하는 작업시간이 1일 2시간 이하일 때는 +10dB을, 2시간 초과 4시간 이하일 때는 +5dB을 규제기준치에 보정한다.
  - 6. 발파소음의 경우 주간에만 규제기준치(광산의 경우 시업장 규제기준)에 +10dB을 보정한다.
  - 7. 공사장의 규제기준 중 다음 지역은 공휴일에 한하여 -5dB를 규제기준치에 보정한다.

#### 가. 주거지역

나. 「의료법」에 따른 중합병원, 「초·중듕교육법」 및 「고듕교육법」에 따른 학교 및 「도서관법」 에 따른 공공도서관의 부지경계로부터 직선거리 50m이내 지역

| 쑈 1.3.2  생 | 활진동 규제기준 | (단위 : | dB(V) |
|------------|----------|-------|-------|
|------------|----------|-------|-------|

| 대 상 지 역                                                                 | 주간<br>(06:00~22:00) | 심야<br>(22:00~06:00) |
|-------------------------------------------------------------------------|---------------------|---------------------|
| 주거지역, 녹지지역, 준도시지역중 취락지구 및 운동·휴양지구,<br>자연환경보전지역, 기타 지역안에 소재한 학교·병원·공공도서관 | 65 Olph             | 60 olpł             |
| 기타지역                                                                    | 70 이하               | 65 이하               |

- 비고 : 1. 진동의 측정방법과 평가단위는 「환경분야 시험 검사 등에 관한 법률」제6조 1항 제2호에 따른 환경 오염공정시험기준에서 정하는 바에 따른다.
  - 2. 대상지역의 구분은 국토의계획및이용에관한법률에 의한다.
  - 3. 규제기준치는 생활진동의 영향이 미치는 대상지역을 기준으로 하여 적용한다.
  - 4. 공사장의 진동규제기준은 주간의 경우 특정공사의 사전신고대상 기계·장비를 사용하는 작업시간이 1일 2시간이하일 때는 +10dB을, 2시간 초과 4시간 이하일 때는 +5dB을 규제기준치에 보정한다.
  - 5. 발파진동의 경우 주간에만 규제기준치에 +10dB을 보정한다.
  - (2) 육상부 암발에 대한 발파진동 규제기준은 국토해양부 규제기준치를 적용할 수 있다.

| 구 분               | 가축류 | 유적, 문화재, | 재래 주택    | 주택, 아파트 | 상업용 | 콘크리트    |
|-------------------|-----|----------|----------|---------|-----|---------|
|                   | 등   | 컴퓨터시설물   | (조적식,목재) | (R.C조)  | 건축물 | 건물 및 공장 |
| 진동기준치<br>(cm/sec) | 0.1 | 0.2~0.3  | 0.3      | 0.5     | 1.0 | 1.0~4.0 |

단, 발파 소음에 민감한 가축사육시설, 요양원 또는 종교시설 등 현장조사결과 상기의 기준을 적용하는 것이 곤란한 경우 별도의 설계기준을 적용한다.

#### 1.3.4 발파설계

- (1) 발파설계는 시험발파를 통해 측정된 결과를 이용하여 환경피해가 발생하지 않도록 규제기준에 준하여 발파설계를 실시한다.
- (2) 시험발파가 수행되지 못한 경우 적절한 변화식을 이용하여 환산한 진동수준을 이용한 발파설계를 한다.
- (3) 발파에 사용된 장약량과 폭원으로부터 이격된 보안건물의 거리를 통한 발파소음 및 진동은 다음 식을 통하여 예측할 수 있다.

[표 1.3.3] 국내에서 보편적으로 적용되는 발파소음 추정식

| 일반적인<br>경우  | $dB(A) = 20 \cdot \log_{10} \frac{P}{P_0}$        | $P = 음압실효치$ (= $82 \cdot (\frac{D}{W^{1/3}})^{-1.2}$ ) $P_0 = 기준 음압실효치$ (= $2 \times 10^{-5} Pa$ ) |
|-------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 방폭매트<br>설치시 | $dB(A) = -16.02 \log(D/W^{\frac{1}{3}}) + 95.195$ | "소음으로 인한 피해의 인과관계<br>검토기준 및 산정방법에 관한 연구,<br>1997, 중앙환경분쟁 조정위원회"                                    |

# [표 1.3.4] 국내에서 보편적으로 적용되는 발파 추정식

[단위] V : cm/sec, D : m, A :  $\mu$  , W : kg

| 제 안 자     | 추 정 식                   | 발 파 진 동 상 수                                                             |  |  |
|-----------|-------------------------|-------------------------------------------------------------------------|--|--|
| Langefors | $V = KW^{0.5}D^{-0.75}$ | $K = 300 \sim 700$                                                      |  |  |
| USBM      | $V = K(D/W^{0.5})n$     | n : 감쇠지수 1.083~2.346<br>K = 12~550                                      |  |  |
| 日本油脂      | $V = KW^{0.75}D^{-1.5}$ | K = 80±40 : Dynamite사용시<br>K = 60±20 : 제어발파 폭약<br>K = 20±10 : Con'c 파쇄기 |  |  |

(4) 2003년부터 전국 공사현장에서 수집된 발파자료를 분석하여 국내 실정에 적합한 발파진동 추 정식은 다음과 같다.17)

$$V = 200(\frac{D}{\sqrt{W}})^{-1.6}$$
 [식 1.3.1]

여기서, V : 진동속도 (cm/sec), W : 지발당 장약량 (kg)

D: 폭워으로부터 보안물건까지 이격거리(m)

(5) 공사의 효율성과 민원발생 방지하기 위한 발파공법 적용범위를 고려하여 선정한다.

[표 1.3.5] 발파공법 적용기준

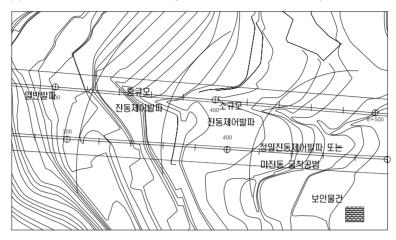
| 구 분                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYPE I<br>미진동 굴착공법                                                                             | TYPE Ⅱ<br>정밀진동 제어발파                            | TYPE III·IV<br>진동제어발파<br>소규모 중규모         |                              | TYPE V<br>일반발파    | TYPE VI<br>대규모 발파        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------|-------------------|--------------------------|--|--|
| 공법개요                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 보안물건 주변에서<br>TYPE II 광법 이내<br>수준으로 진동을 저<br>감시킬 수 있는 공법<br>으로서 대형 브레이<br>커로 2차 파쇄를 실<br>시하는 광법 | 암반에 균열을 발생시킨 후, 대형<br>브레이커에 의한 2<br>차 파쇄를 실시하  | 이 존재하는<br>발파" 결과(<br>설계를 실시 <sup>©</sup> | 경우 "시험<br>게 의해 발파<br>가여 규제기준 | 충족시킬 수 있을         | 인물건이 전혀 존재<br>하지 않는 사가 이 |  |  |
| 주 사용폭약<br>또는 화공품                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 최소단위미만폭약<br>미진동파쇄기<br>미진동파쇄약 등                                                                 | 에멀젼 계열 폭약                                      | 에멀젼 계열<br>폭약                             |                              | 에멀젼 계열 폭약         | 주폭약.초유폭약<br>기폭약.에멀젼      |  |  |
| 지발당장약량<br>범위(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 폭약기준<br>0.125 미만                                                                               | 0.125 이상 0.5 이상 1.6 이상<br>0.5 미만 1.6 미만 5.0 미만 |                                          |                              | 5.0 이상<br>15.0 미만 | 15.0 이상                  |  |  |
| 천공직경                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ф51mm 이내                                                                                       | ф <b>51mm 이</b> 내                              | ф51mm 이내 ф76mm                           |                              | ф76mm             | ቀ76mm 이상                 |  |  |
| 천공장비                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 공기압축기식 크롤러 드릴 또는 유압식 크롤러 드릴 선택 사용                                                              |                                                |                                          |                              |                   |                          |  |  |
| 표준패턴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 미진통 굴착공법                                                                                       | 정밀진동<br>제어발파                                   | 진동제어발파<br>소규모 중규모                        |                              | 일반발파              | 대규모 발파                   |  |  |
| 천공깊이<br>(m)※                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                                                                                            | 2.0                                            | 2.7                                      | 3.4                          | 5.7               | 8.7                      |  |  |
| 최소저항선<br>(m)※                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.7 0.7                                                                                        |                                                | 1.0                                      | 1.6                          | 2.0               | 2.8                      |  |  |
| 천공간격<br>(m)※                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7 0.8                                                                                        |                                                | 1.2                                      | 1.9                          | 2.5               | 3.2                      |  |  |
| 표준 지발당<br>장약량(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                              | 0.25                                           | 1.0                                      | 3.0                          | 7.5               | 20.0                     |  |  |
| 파쇄 정도                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 균열만 발생<br>(보통암 이하)                                                                             | 그 마얀 + 균얼                                      |                                          | · 균열                         | 파쇄 + 대괴           | 파쇄 + 대괴                  |  |  |
| 계측관리                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 필 수                                                                                            | 필 수                                            | 픨                                        | 수                            | 선 택               | 선 택                      |  |  |
| 발파보호공                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 필 수                                                                                            | 수 필수                                           |                                          | 수                            | 불 필 요             | 불 필 요                    |  |  |
| 2차 파쇄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 대형브레이커 적용 대형브레이커 적용                                                                            |                                                | -                                        |                              | _                 | _                        |  |  |
| W NOT THE TAXABLE PROTECTION OF THE PROTECTION O |                                                                                                |                                                |                                          |                              |                   |                          |  |  |

<sup>※</sup> 천공 깊이, 최소저항선, 천공간격 치수 등은 평균적으로 제시한 수치이며, 공사시행 전에는 시험발파에 따라 현장별로 검 토·적용할 것.

[표 1.3.6] 발파공법 적용기준

| 적용공법           | 진동속도<br>이격거리(m) | 0.1 cm/s | 0.2 cm/s | 0.3 cm/s | 0.5 cm/s | 1.0 cm/s | 5.0 cm/s | 적용공법                     |
|----------------|-----------------|----------|----------|----------|----------|----------|----------|--------------------------|
| TYPE I<br>미진동  | 5               | 0.00     | 0.00     | 0.01     | 0.01     | 0.03     | 0.25     | TYPE II                  |
|                | 10              | 0.01     | 0.02     | 0.03     | 0.06     | 0.13     | 0.99     | TYPE Ⅲ                   |
|                | 15              | 0.02     | 0.04     | 0.07     | 0.13     | 0.30     | 2.24     | TVDF IV                  |
|                | 20              | 0.03     | 0.07     | 0.12     | 0.22     | 0.53     | 3.98     | TYPE IV                  |
| 굴착공법           | 25              | 0.05     | 0.11     | 0.18     | 0.35     | 0.83     | 6.21     | TYPE V                   |
|                | 30              | 0.07     | 0.16     | 0.27     | 0.50     | 1.20     | 8.95     | 일반발파                     |
|                | 40              | 0.12     | 0.28     | 0.47     | 0.89     | 2.13     | 15.9     |                          |
|                | 50              | 0.19     | 0.44     | 0.74     | 1.40     | 3.32     | 24.9     |                          |
| TYPE II        | 60              | 0.27     | 0.64     | 1.06     | 2.01     | 4.79     | 35.8     |                          |
| 정밀진동<br>제어발파   | 70              | 0.37     | 0.87     | 1.45     | 2.74     | 6.51     | 48.7     |                          |
| ~ 127          | 80              | 0.48     | 1.14     | 1.89     | 3.58     | 8.51     | 63.6     |                          |
|                | 90              | 0.61     | 1.44     | 2.39     | 4.53     | 10.8     | 80.5     |                          |
|                | 100             | 0.75     | 1.78     | 2.95     | 5.59     | 13.3     | 99.4     |                          |
| TYPE III       | 110             | 0.90     | 2.15     | 3.57     | 6.76     | 16.1     | 120      |                          |
| 소 규 모<br>진동제어  | 120             | 1.08     | 2.56     | 4.25     | 8.05     | 19.1     | 143      | TYPE VI<br>- 대규모<br>- 발파 |
|                | 130             | 1.26     | 3.01     | 4.99     | 9.45     | 22.5     | 168      |                          |
|                | 140             | 1.47     | 3.49     | 5.79     | 11.0     | 26.1     | 195      |                          |
|                | 150             | 1.68     | 4.00     | 6.64     | 12.6     | 29.9     | 224      |                          |
|                | 160             | 1.91     | 4.55     | 7.56     | 14.3     | 34.0     | 254      |                          |
|                | 170             | 2.16     | 5.14     | 8.53     | 16.2     | 38.4     | 287      |                          |
|                | 180             | 2.42     | 5.76     | 9.56     | 18.1     | 43.1     | 322      |                          |
| TYPE IV        | 190             | 2.70     | 6.42     | 10.7     | 20.2     | 48.0     | 359      |                          |
| 중 규 모          | 200             | 2.99     | 7.11     | 11.8     | 22.4     | 53.2     | 398      |                          |
| 진동제어           | 210             | 3.30     | 7.84     | 13.0     | 24.7     | 58.6     | 438      |                          |
|                | 220             | 3.62     | 8.61     | 14.3     | 27.1     | 64.4     | 481      |                          |
|                | 230             | 3.96     | 9.41     | 15.6     | 29.6     | 70.3     | 526      |                          |
|                | 240             | 4.31     | 10.2     | 17.0     | 32.2     | 76.6     | 573      |                          |
|                | 250             | 4.67     | 11.1     | 18.4     | 34.9     | 83.1     | 621      |                          |
|                | 260             | 5.05     | 12.0     | 20.0     | 37.8     | 89.9     | 672      |                          |
| TYPE V<br>일반발파 | 270             | 5.45     | 13.0     | 21.5     | 40.8     | 96.9     | 725      |                          |
|                | 280             | 5.86     | 13.9     | 23.1     | 43.8     | 104      | 779      |                          |
|                | 290             | 6.29     | 15.0     | 24.8     | 47.0     | 112      | 836      |                          |
|                | 300             | 6.73     | 16.0     | 26.6     | 50.3     | 120      | 895      |                          |
| TYPE VI        | 450             | 15.1     | 36.0     | 59.8     | 113      | 269      | 2013     |                          |
| 0.06           | 미진동             | 굴착공법     | 0.25     | 정밀진동제어발파 |          | 1.00     | 소규모진등    | 5제어발파                    |
| 3.00           | 중규모진동제어발파       |          | 7.50     | 일반발파     |          | 20.0     | 대규모      | 2발파                      |

<sup>[</sup>주] 1. 위 발파궁법별 적용거리 기준 및 지발당 장약량은 설계 발파진동 추정식  $v=200(D/\sqrt{W})^{-1.6}$ 에 의하여 설정한 것으로, 발파 대상 현장의 암반특성 및 관리 대상 보안물건의 특성에 따라 중감될 수 있다.

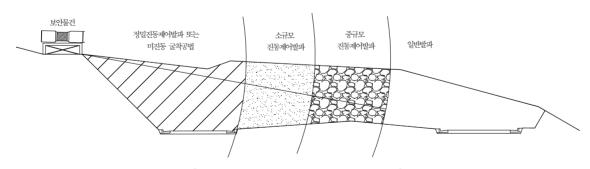

<sup>2.</sup> 발파소음의 제어는 지반진동보다 훨씬 어려우므로 만약, 발파소음에 민감한 가축 사육시설 또는 요양원, 종교시설 등이 근접한 경우에는 별도 공법을 적용할 수 있다.

<sup>3.</sup> TYPE별 공법 설계는 상기기준에 맞게 하되 현장여건에 따라 조정할 수 있다.

<sup>4.</sup> 발파진동은 보안물건의 노후도나 상태, 암반상태, 진동주파수 등에 따라 달라지므로, 설계자 및 발파자는 보안물 건상태, 현장조건과 관련법규 등을 검토하여 발파진동 허용기준치를 설정하고 이에 대한 이격거리별 지발당장 약량을 산정하여야 한다.


# 1.3.5 발파물량 산출

- (1) 발파원과 보안물건과의 이격거리는 사거리를 기준으로 산출한다.
  - ① 평면도상(○○~○○간 고속도로건설공사 STA.6+700지점 우측)




<그림 1.3.2> 평면도상 발파영향 범위

# ② 횡단면도상



[보안물건이 발파지역보다 낮은 경우]

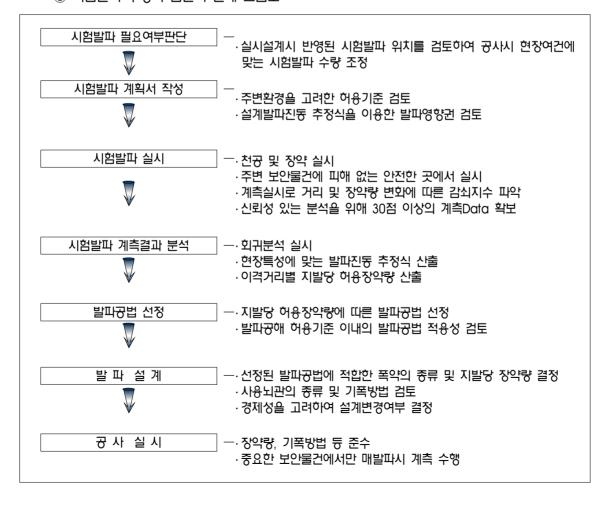


[보안물건이 발파지역보다 높은 경우]

<그림 1.3.3> 횡단도상 발파영향 범위

- (2) 평면도상 발파공법별 기준에 따른 이격거리를 산출하여 횡단면도에 원호를 그린다.
- (3) 원호로 그은 선에 의하여 발파공법별 암 발파량을 구분하여 수량을 산출한다.
- (4) 수량 산출을 용이하게 하기 위해 필요한 경우 원호와 계획선 및 지표선의 교차점을 잇는 현으로 직선화하여 수량을 산출할 수 있다.

# 1.3.6 시험 발파


- (1) 시공전 사전조사
  - ① 발파 소유진동에 의한 공사지연 또는 신속한 민원 해결을 위해 사전조사를 실시한다.
  - ② 사전조사는 설명회 개최 등 주민들에 대한 홍보를 실시하고, 주민대표, 건물주 입회하에 실시한다.
  - ③ 발파 착수전 주변 보안물건에 대해 건물현황과 균열상황을 파악하여 발파진동이 미칠 수 있는 현황을 조사한다.
  - ④ 발파영향권 내에 있는 모든 시설물에 발생된 균열을 사진과 비디오로 촬영하여 추후 민원 발생시 피해여부를 판단할 수 있는 근거자료로 확보한다.

#### (2) 사전조사 내용

- ① 건물의 구조형태, 노후정도, 균열발달 상태
- ② 대표적 균열상태의 정량적 측정
- ③ 건물의 지반상태
- ④ 건물의 시설물 현황 등
- ⑤ 가축의 현황 및 축종 파악

#### (3) 시험 발파

① 시험발파 수행시 암발파 설계 흐름도



#### ② 시험발파 방법

- 가. 시험발파는 발파공사에 대한 중요도 및 위험요인을 감안하여 발파전문기관에 의뢰하여 실시한다.
- 나. 발파진동과 소음에 대한 계측결과는 전문기술자에 의해 검토와 검증절차를 거쳐 객관적 인 자료를 유지한다.
- 다. 시험발파 위치선정은 각종 시설물에 피해가 미치지 않는 원거리에서 실시한다.
- 라. 시험발파시 신뢰성을 확보하기 위해 공사관계자, 관할 경찰관과 발파영향권내 시설물 소유자 또는 주민이 입회하여 합동으로 실시한다.

#### (4) 시험발파 결과분석

- ① 시험발파 결과는 회귀분석을 통하여 신뢰구간 약 95%범위에서 분석한다.
- ② 발파진동 추정식은 30점 이상의 측정자료를 회귀분석하여 신뢰도를 높인다.
- ③ 결과분석에 의한 추정식의 상관계수가 0.70에 미치지 못하는 경우에는 시험발파를 다시 실시하여야 한다.
- ④ 시험발파 결과분석에 의한 발파진동 추정식을 구하고, 주변 건축물이나 시설물에 영향이 없도록 설계 지발당 장약량을 결정한다.

# 1.3.8 발파구간 면고르기(8) 19)

- (1) 일반발파는 발파암 깎기구간을 소형 브레카와 인력에 의해 요철면 고르기를 실시한다.
- (2) 확장발파는 암절취시 브레카를 이용하므로 면고르기시 소형 브레카와 중복되므로 인력에 의한 부석정리만 실시한다.
- (3) 진동발파 적용구간은 일반발파와 달리 발파가 정교하게 이루어지므로 면고르기 물량산정시 일반발파의 30%를 적용한다.

[표 1.3.6] 발파암 면고르기

| 구 분    | 일반발파                                 | 확장발파                           | 진동제어발파                                     |
|--------|--------------------------------------|--------------------------------|--------------------------------------------|
| 발파암 깎기 | ·발파 : 100%                           | · 발파 : 10%<br>· 브레카 : 90%      | _                                          |
| 면고르기   | · 요철면고르기<br>: 소형 브레카<br>·부석정리 : 보통인부 | ·요철면고르기 : 미실시<br>·부석정리 : 보통 인부 | · 요철면고르기<br>: 소형 브레카(30%)<br>·부석정리 : 보통 인부 |

주) 1. 일반발파 : 일반발파(TYPE- $\mathrm{VI}$ ), 대규모발파(TYPE- $\mathrm{VI}$ )

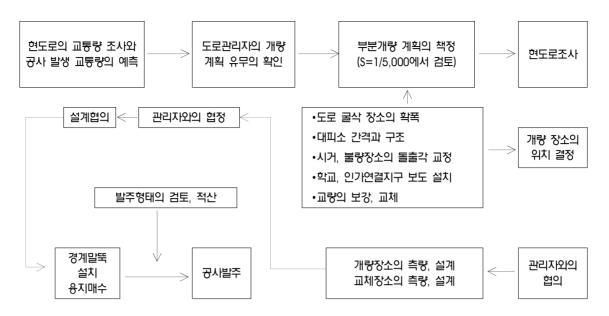
2. 확장발파 : 기존 비탈면 확장구간에 적용하는 발파

3. 진동제어발파 : 소규모진동제어발파(TYPE-III), 중규모진동제어발파(TYPE-IV),

<sup>19)</sup> 육상부 암발파 설계 및 계측적용기준 (설계처-527, 2007.02.23)

# 1.4 공사용 도로

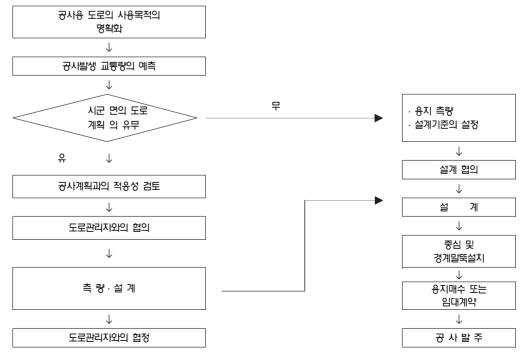
# 1.4.1 공사용 도로계획


- (1) 공사용 도로는 공정, 시공성, 경제성 등에 영향을 주므로 사용목적, 지형, 주변도로 상황, 경제 성 등을 종합적으로 고려하여 계획한다.
- (2) 공사용 도로는 재료 및 장비의 반출입에 적합하도록 계획한다.
- (3) 현장내 공사용 도로, 기존 도로, 신설 공사용 도로의 순으로 관련 공사의 공정 등을 고려하여 계획한다.
- (4) 공사용 도로의 차로수는 공사용 차량의 교통량을 고려하여 결정한다.
- (5) 1차로 도로의 경우는 필요에 따라 300.0m 간격마다 길이 20.0m, 폭 5.0m의 대피소를 설치한다.
- (6) 차로폭은 공사용 차량 일교통량(기존 도로의 경우는 기존 교통량을 포함)이 4,000대(중교통, 왕복) 이상이면 2차로, 4,000대 미만이면 1차로를 적용한다.

## 1.4.2 현장내 공사용 도로

- (1) 현장내 공사용 도로는 본선 또는 부체도로로 계획된 부분이 우선적으로 사용될 수 있도록 계획한다.
- (2) 궁사용 도로의 위치 및 계획고는 땅깎기 및 흙쌓기의 궁정을 고려하여 설정하고 궁사 진행에 따라 순서를 바꾸면서 사용하도록 계획한다.
- (3) 공사용 도로를 하천 및 해상에 계획하는 경우 관할 기관과 가도, 가교 등에 대해 충분히 협의하고, 경제성, 시공성 및 환경훼손 등을 고려한다.

# 1.4.3 기존도로를 이용한 공사용 도로


- (1) 기존도로를 그대로 이용하는 경우는 사전에 충분한 조사 및 도로관리자와 협의한다.
- (2) 기존도로에 대한 조사는 교통량, 도로의 구성, 폭, 노면 및 연도 상황, 교통안전시설, 지하매설 물 등을 조사하고, 필요시 기존 구조물의 안전진단을 실시한다.
- (3) 기존 도로를 개량하는 경우는 계획의 유무, 공사방법, 용지의 취득 등에 대하여 도로관리자와 협의한다.



<그림 1.4.1> 기존도로 개량 계획의 흐름

## 1.4.4 신설 공사용 도로

- (1) 주변에 적당한 기존 도로가 없거나 현지 상황에 의해 기존 도로를 사용할 수 없는 경우는 경제적인 노선을 선택하여 신설 공사용 도로를 계획한다.
- (2) 사용 후 철거하는 경우에 원지형의 완전한 원형복구는 불가능하므로 관계자와 협의하여 존치시킬 수 있는 형상을 고려하여 설계한다.
- (3) 대규모 공사용 도로는 땅깎기, 흙쌓기 뿐만 아니라 가교, 가설터널을 고려하면 경제적으로 되는 경우가 있기 때문에 이에 대해 검토한다.



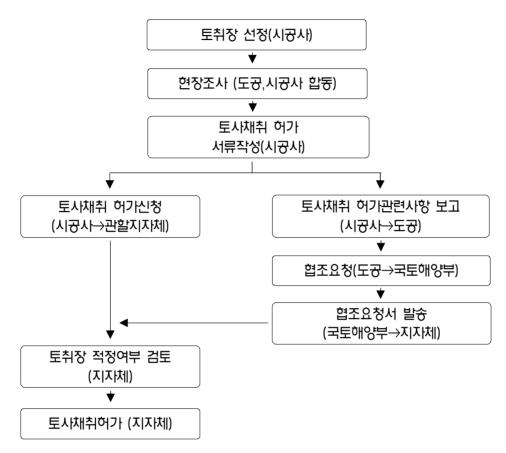
<그림 1.4.2> 신설 도로용 도로 계획의 흐름

# 1.4.6 공사용 토공 가도20)

- (1) 육상구간 설치기준
  - 성토구간
    - 가. 가도 소요 토공량의 80%는 본선 성토량으로 유용하고. 20%는 잔토처리한다.
    - 나, 토공 유동에서 유용 성토량을 순성토량에서 감한다.
    - 다. 다짐은 본선 노체 다짐의 50%를 적용한다.
  - ② 사토구간
    - 가. 가도 소요 토공량의 80%는 사토처리하고, 20%는 잔토처리한다.
    - 나. 토공 유동에서 잔토처리량을 사토량에서 감한다.
    - 다. 다짐은 본선 노체 다짐의 50%를 적용한다.
- (2) 하상구간 설치기준
  - ① 하상구간은 홍수위를 기준으로 물이 흐르는 곳에 적용한다.

  - ③ 성토구간
    - 가. 가도 소요 토공량의 70%는 본선 성토량으로 유용하고, 30%는 잔토처리한다.
    - 나, 토공 유동에서 유용 성토량을 순성토량에서 감한다.
    - 다. 다짐은 본선 노체 다짐의 50%를 적용한다.
  - ④ 사토구간
    - 가. 가도 소요 토공량의 70%는 사토처리하고, 30%는 잔토처리한다.
    - 나. 토공 유동에서 잔토처리량을 사토량에서 감한다.
    - 다. 다짐은 본선 노체 다짐의 50%를 적용한다.
- (3) 공사용 토공 다짐기준21)
  - ① 차량통행이 없는 현장 토석의 유용을 위한 여성토구간은 비다짐을 적용한다.
  - ② 차량통행이 필요한 본선부 이 외 구간의 공사용 흙쌓기 구간은 가도성토 다짐기준인 본선 노체다짐의 50%를 적용한다.

# 1.5 토취장 및 사토장


#### 1.5.1 토취장 계획

- (1) 토취장은 사전조사를 통해 토질, 채취 가능한 토량, 방재대책, 법적규제, 운반로, 현지조건 등을 파악하여 선정한다.
- (2) 토취장 선정시 복수의 후보지를 대상으로 지형, 토질특성, 채취 가능량, 운반로, 방재, 문화재, 보상, 환경, 토지 이용현황 및 법적 규제 등을 검토한다.

<sup>20)</sup> 가도 토공 설계기준 검토 (설계이 15201-1380, 1998.09.30)

<sup>21)</sup> 여성토 및 공사용 흙쌓기 다짐기준 검토 (설계처-2939, 2007.10.17)

- (3) 토석정보공유시스템(TOCYCLE)를 이용한 인근현장 토석발생시기 및 토석량을 검토하여 환경훼 손을 방지한다.<sup>22)</sup>
- (4) 토취장 계획에 따른 인허가는 다음 업무흐름을 따른다.



<그림 1.5.1> 토취장 허가업무 흐름도23)

## 1.5.2 사토장 계획

- (1) 사토장은 사토 가능량, 방재 대책, 법적 규제, 운반로, 현지조건 등을 종합적으로 조사한 후 계획한다.
- (2) 사토처리는 사토 가능량, 방재대책, 법적 규제, 운반로, 토지 이용계획, 용지보상, 문화재, 환경 등을 고려하여 가장 유리한 곳을 선정한다.
- (3) 토석정보공유시스템(TOCYCLE)를 이용한 인근현장 토석발생시기 및 토석량을 검토하여 환경훼 손을 방지한다.
- (4) 고속도로 확장공사중 발생하는 폐콘크리트를 최대입경 100mm이하로 파쇄하여 L형측구 뒷채움 재, 기초 잡석 등으로 활용하여 사토량을 최소화한다.<sup>24)</sup>

<sup>22)</sup> 고속도로 건설공사 기간중 토석정보 실용화 방안 (건설관리처-2913, 2005.12.13)

<sup>23)</sup> 고속도로 건설공사 기간중 토취장 업무처리 매뉴얼 (건설관리처-596, 2005.03.24)

<sup>24)</sup> 고속도로 확장공사구간 폐 콘크리트 활용방안 검토 (건설기 10105-102, 2002.07.25)