제 3 장 설계일반사항

3.1 하 중1)

3.1.1 설계 하중

- (1) 교량의 설계하중은 '도로교설계기준 제1장 총칙 1.3 교량의 등급'에 의하여 설계활하중 등급을 정하고, 그 적용은 같은 설계기준 '제2장 설계일반사항 2.1 하중'에 따른다.
- (2) '사용하중은 정부 및 시설물의 관리 주체가 제정한 관리규정에 따라야 한다'라는 콘크리트 구조설계기준에 의거 한국도로공사에서 시행하는 구조물의 균열검토에 적용하는 사용하중은 아래와 같다.

사용하중 = (주하중 + 주하중에 상당하는 특수하중 + 온도의 영향 + 0.3*풍하중)*1.0 ※ 단. 적용범위는 도로교 설계기준에 따름

(3) 본 지침에 나타나 있지 않는 사항에 대해서는 아래의 시방서 등에 따르기로 한다.

• 도로교 설계기준한국도로교통협회(2005 개정)• 도로교 설계기준 해설대한토목학회, 교량설계핵심기술연구단(2008 개정)• 콘크리트 구조설계기준한국콘크리트학회(2007 개정)• 콘크리트 구조설계기준 해설한국콘크리트학회(2007 개정)• 강도로교 상세부 설계지침국토해양부(2006 개정)• 교량설계기준한국도로광사(2000 개정)• 도로의 구조설계기준에 관한 규정국토해양부(2003 개정)• 기타 국토해양부에서 제정된 관련시방서국토해양부

3.1.2 활이중의 재하방법

중앙분리대가 교면상에 있는 경우 활이중은 다음과 같이 재하한다.

- (1) 중앙분리대에는 활이중을 재이하지 않는다.
- (2) 중앙분리대 폭이 1m 이하인 경우에는 중앙분리대를 교면으로 보고 설계해도 좋다.

3.1.3 기타 이중

- (1) 교량에 쓰이는 방호책의 설계하중은 철근콘크리트 벽식 방호책의 중량을 고려하는 것을 원칙으로 한다.
- (2) 낙하물 방지책을 설치하는 경우, 그 고정하중을 [표 3.1.1]에 나타낸 값으로 하여도 좋다.

[표 3.1.1] 낙하물 방지책의 고정하중

노면에서의 높이	고 정 하 중
3.8m	2.1 kN/m
3.0m	1.6 kN/m
2.0m	0.2 kN/m

- (3) 합성보에 있어서, 바닥판 콘크리트용 거푸집의 고정하중은 1.0x10⁻³㎞, 박스거더에 매설해 사용하는 바닥판 거푸집의 고정하중은 0.5x10⁻³㎞로 해도 좋다.
- (4) 고속도로의 교량(램프 포함)은 원칙적으로 설하중은 고려하지 않는다.
- (5) 가설시 하중은 가설단계별 가설방법과 가설중의 구조를 고려하여 자중, 가설장비, 기자재, 바람, 지진의 영향 등 모든 재하조건 등을 고려하여 결정한다.

3.2 설계방법 및 안전율

교량의 설계하중 및 증가계수는 허용용력 설계법으로 설계하는 경우에 '도로교 설계기준 제2장 설계일반사항 2.2.2 허용용력 설계법'에 따르도록 하고, 강도설계법에 의해 설계하는 경우에는 같은 설계기준의 2.2.3 강도설계법'에 따르도록 한다.

3.3 사용재료

3.3.1 강 재

강재는 [표 3.3.1]의 규격에 적합한 것을 표준으로 한다.

[표 3.3.1] 강재의 규격

강재의 종류		규 격	강재기호
	KS D 3503	일반구조용 압연 강재	SS 400
1. 구조용	KS D 3515	용접구조용 압연 강재	SM 400, SM 490, SM 490Y,SM 520, SM 570
강재	KS D 3529	용접구조용 내후성 열간 압연 강재	SMA 400, SMA 490, SMA 570
	KS D 3868	교량구조용 압연강재	HSB500, HSB600
	KS D 3566	일반구조용 탄소 강관	STK 400, STK 490, STK 500
2. 강관	KS F 4602	강관말뚝	STK 400, STK 490, STK 500
	KS F 4605	강관시트파일	SKY 41, SKY 50
3. 접합용 강재	KS B 1010	마찰 접합용 고장력 6각 볼트, 6각 너트, 평와셔의 세트	F8T, F10T, F13T

강재의 종류		규 격	강재기호
	KS D 7004	연강용 피복 아크 용접봉	
4. 용접재료	KS D 7006	고장력강용 피복 아크 용접	
	KS D 7024	서브머지드 아크 용접용 강선 및 용재	
	KS D 3710	탄소강 단강품	SF 490A, SF 540A
	KS D 4101	탄소강 주강품	SC 450
	KS D 4106	용접구조용 주강품	SCW 410, SCW 480
5. 주단조품 (鑄鍛造品)	KS D 4102	구조용 고장력 탄소강 및 저합금강 주 강품	LMnSC1A, LMnSC2A
	KS D 3752	기계구조용 탄소 강재	SM 35C, SM 45C
	KS D 4301	회주철품	GC 250
	KS D 4302	구상 흑연주철품	GCD 400
	KS D 3509	피아노 선재	PWR
	KS D 3510	경강선	
	KS D 3514	와이어 로프	
6. 선재(線材)	KS D 3566	피아노선	
선재2차 제품	KS D 3559	경강선재	HSWR
<u>-</u>	KS D 7002	PS강선 및 PC 스트랜드	원형선 SWPC1, 이형선 SWPD1, 2연선 SWPC2, 7연선 SWPC7, 이형 3연선 SWPD3, 19연선 SWPC19
	KS D 3504	철근콘크리트용 봉강	SD 30, SD 35, SD 40
7. 강봉	KS D 3505	PS강봉	A종 1호 SBPR 785 / 930 A종 2호 SBPR 785 / 1030 B종 1호 SBPR 930 / 1080 B종 2호 SBPR 930 / 1180

3.3.2 콘크리트

(1) 설계기준강도²⁾

콘크리트는 원칙적으로 [표 3.3.2]의 설계기준강도 이상의 것을 사용하는 것으로 한다.

[표 3.3.2] 콘크리트의 설계 기준강도 및 적용구조물

종	별	설계기준 강도 (MPa)	골재최대 치수 (mm)	적용 구조물	
		4.5	13	PSM교 세그먼트	
고경	도	45	19	FCM교 세그먼트	
		40	19	PSC빔, PSC 박스거더 및 슬래브, Preflex 하부플랜지	
		30	25	교량 노출바닥판	
1₹	5	27	25	주형교량 슬래브, PSC빔교 바닥판, RC 슬래브, Steel Box 거더교, 교각, 중분대기초	
			25	터널라이닝 및 필요시	
2₹	5	24	32	교량하부구조(교대, 우물통본체), 교량날개벽, RC용벽, 연석, 암거, 암거접속슬래브, 방음벽 기초	
2종(수중) 24 25 수중불분리성 콘크리트		25	수중불분리성 콘크리트		
3종		21	25	절성토부 도수로, 도수로 집수거, V·L·U형측구, 중분대 및 길어깨 집수정	
			40	중력식 옹벽, 매스콘크리트, 부대시설기초, 배수관기초	
5종 15 50 레벨링 콘크리		50	레벨링 콘크리트, 속채움콘크리트(우물통기초)		
기계 특수 타설 지역 30 25 중분대 구체, 난간, L형측국		25	중분대 구체, 난간, L형측구, 다이크		
소구 조물	일반 지역	24	25	중분대 구체, 난간, L형측구, 다이크	
포	포장 f _{bk} =4		32	포장슬래브	
빈배합		f7=5	40	포장중간충용 콘크리트	

주) 현장여건 및 사용장비에 따라 골재치수는 변경될 수 있다.

(2) 구조물 덮개(피복) 기준3)

구분			시방규정 (mm)	사용피복(mm) 개선적용(안)	비고	
				, ,	60	주철근 Ø22 이하
	래브	상부		50	70	주철근 Ø22 이하
	¬!— 닥판)			25	40	주철근 Ø22 이하
		하누	<u>!</u>		50	주철근 Ø22 이하
		구처		지중 : 80	100	무늬거푸집 사용시도 동일
	1대	#131#JE	노출면	30	50 (70)	()는 무늬거푸집 사용시
(π	1각)	파라페트, 날개벽	지중면	60	80	콘크리트 치기부터 구조물 수명까지 흙에 접해있을 때 기준
		슬래브	상부	콘시 : 30 도시 : 60(50)	80 (70)	()는 지상 노출 시
_			하부	40	60	
	멘	벽체		60	80	
		날개벽	노출면	30	50 (70)	()는 무늬거푸집 사용시
		르╢기	지중면	60	80	
<u> </u>	}벽	구체	노출면	30	50 (70)	()는 무늬거푸집 사용시
0		I ^II	지중면	60	80	
	통로	노출면 (내측)		30	45 (70)	()는 무늬거푸집 사용시
0171	0±	지중면 (외측)		60	80	
암거	수로	노출면 (내측)		30	95	
	ーナエ	지중면 (외측)		60	75	
기초 (footing)		직접기	초	80	100	
		PILE 기초	상면, 측벽	80	100	
		PILE 기소	하면	80	150 (200)	파일두부근입길이(100)고려 ()는 무늬거푸집 사용시

- * 슬래브의 마모츙이 콘크리트일 경우 마모츙 두께 40㎜ 별도 추가
- * 침식 또는 화학작용을 받는 경우에는 현지여건에 따라 아래의 방법 중 적절한 방법을 선택하여 철근을 보호하여야 한다.
 - ① 최소덮개의 중가 (가급적 사용피복은 100㎜ 이상을 적용)

 - ② 에폭시 도막철근의 사용 ③ 특수콘크리트의 덧씌움 등

5-3-6 | 제5편 구조물공

(3) 구조물 모서리 처리 설계기준4)

① 모서리 구분

용력이 집중되는 모서리 : 부재와 부재가 만나는 모서리 예) 라멘교 상판과 벽체가 만나는 부분 교각의 코핑과 기둥이 만나는 부분 모서리 중류 무관한 모서리 : 동일 부재내 면과 면이 만나는 부분 예) 상판 슬라브 각 모서리 기둥의 모서리, 교대 앞면 모서리 등 유력이 집중하는 모서리 : 부재와 부재가 만나는 모서리 제 기초와 벽체 또는 기둥이 만나는 모서리 모서리 등 모서리 등 무서리 등 무사한 모서리 : 동일 부재내 면과 면이 만나는 부분

② 구조물 부위별 모서리 처리

예) 지중에 묻힌 기초 혹은 기둥의 각 모서리 등

구조물의 미관과 안정성을 도모하고 모서리 파손을 방지할 수 있어야 하며, 상하부 구조물과 의 미적조화를 고려하여 슬래브, 교각의 모양과 모서리 처리 형상을 설계하여야 한다.

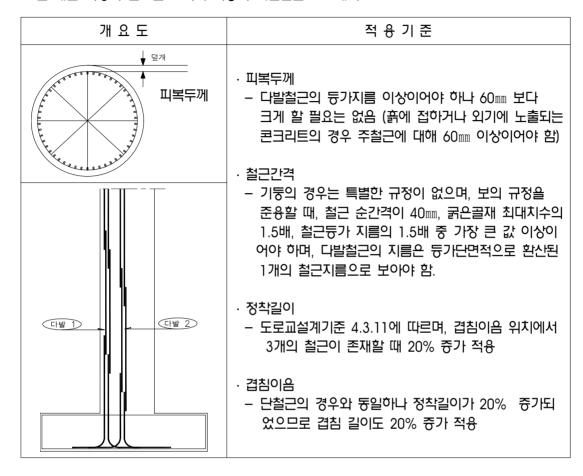
3.3.3 철근5)

- (1) 겹이욤 길이 적용기준
 - ① 고속도로 설계의 철근 겹이욤 길이 산정은 도로교 설계기준을 준용한다.
 - ② 고속도로 설계의 철근 겹이음 길이 산정은 식에 의한 계산방법 적용을 원칙으로 한다.

(2) 철근길이

- ① 철근길이는 8m를 기준으로 설계한다
- ② 시공시 현장여건을 감안하여 철근손실이 최소화될 수 있도록 변경 가능하다.

(3) 철근가공조립 적용기준


구	분	적용방안	비고
751	일반형식	보통	
교대	기둥식	매우복잡	
교각		매우복잡	
	배수구, 용벽	간단	
터널	난간, 공동구	복잡	
	라이닝, 벨마우스	매우복잡	

⁴⁾ 구조물 모서리처리에 따른 설계기준 및 시방서작성 (설계일 16210-166, 94.10.31)

⁵⁾ 다발철근의 적용성 검토 (설계처-3600, 05.12.13)

(4) 다발철근 배치

2단 배근 이상이 필요한 교각의 시공시 다발철근으로 배치

(5) 압축부재 축방향 철근

구 분	철근 및 유효단면적				
4.3.7.1 축방향 철근	감소된 유효 콘크리트 단면적은 총단면적의 1/2 이상 이고, 축하중을 지지하기 위해 1%의 축방향 철근을 요구하는 단면적 이상이어야 한다.				
유효 단면적 산출식	\cdot 나선철근 또는 기계적 이음을 이용한 원형 띠철근 압축부재($\psi=0.75$) $A_{eff}=\frac{P_u}{\psi~0.85~\left(0.85~f_{ck}+0.01~f_y ight)}$ \cdot 띠철근 압축부재($\psi=0.70$) $A_{eff}=\frac{P_u}{\psi~0.80~\left(0.85~f_{ck}+0.01~f_y ight)}$ 여기서, A_{eff} : 기둥의 유효단면적, $P_u: 축방향하중$ 단, $A_{eff}>~1/2~A_g$				

단, 압축부재의 감소된 유효단면적은 축력이 주된 하중으로 작용하여 휨모멘트보다는 축력이 강도 를 지배하는 압축부재에 적용된다.