제 6 장 프리스트레스트 콘크리트교

6.1 설계일반사항

6.1.1 설계이론 및 일반 고려 사항

- (1) 설계되는 부재는 규정된 강도 조건에 적합해야 한다.
- (2) 설계는 프리스트레스를 도입할 때부터 구조물의 수명기간 동안 받을 수 있는 모든 위험한 하중단계에서의 강도(강도설계)와 사용상태에서의 거동(허용용력설계)을 기초로 수행한다.
- (3) 온도와 크리프 및 건조수축에 의한 영향도 고려해야 한다.

6.1.2 기본 가정

다음의 가정은 일체로 된 부재를 설계하는데 적용한다.

- (1) 휨과 축방향력을 받는 부재의 강도 설계는 도로교 설계기준 4.4.3.1을 기초로 한다.
- (2) 프리스트레스 도입시, 사용하중 작용시, 균열하중 작용시의 용력 계산은 다음 가정에 의한 선형 이론에 따라야 한다.
 - ① 전체 하중범위에 걸쳐 변형률은 부재의 깊이에 따라 선형으로 변화한다.
 - ② 균열이 발생하기 전에는 유력은 변형률에 선형으로 비례한다.
 - ③ 균열이 발생한 후에는 콘크리트의 인장 강도는 무시한다.

6.1.3 단면형상 선정

단면형상을 선정할 때에는 입체조건, 경제성, 시공성, 미관 등을 충분히 검토하여 가장 합리적인 단면 형상을 선정하도록 한다.

6.1.4 PS강재 종류 선정

- (1) 선정방법
 - ① PS강선, PS강봉, PS강연선은 한국산업규격 KSD 7002, KSD 3505에 적합한 것이어야 한다.
 - ② 동일한 PS궁법에 PS강재 종류가 2종 이상 사용되는 경우에는 교량 종류, 도입 프리스트레스 량, 시궁성, 정착부 부근의 부재 단면크기 등을 충분히 고려하여 PS강재를 선정하여야 한다.
- (2) PS강재를 선정하는 경우에 검토 사항
 - ① PS강재의 길이가 길어짐에 따라 PS강재의 도입 긴장력이 큰 PS강재(대형PS강재)가 경제적이다.
 - ② 대형 PS강재가 유리하다고 해도 소요 프리스트레스와 조화를 이루지 않는다면 오히려 비경 제적인 결과를 초래하므로 유의하여야 한다.

6.2 재 료

6.2.1 콘크리트 종류와 사용구분

PS용 콘크리트의 종류와 사용구분은 [표 6.2.1]을 권장사항으로 한다.

[표 6.2.1] PS용 콘크리트의 종류와 사용구분

설계기준강도	사 용 구 분
f_{ck} = 45MPa	거더높이의 제한을 받는 프리캐스트 포스트텐션 거더
f_{ck} =40MPa	프리캐스트 포스트텐션 거더 및 현장타설 포스트텐션 거더
f_{ck} = 35MPa	현장타설 포스트텐션 거더 및 프리캐스트 구조부재의 접합부에 프리스트레스를 도입하는 부재, 연속합성보의 1차 바닥판
$f_{\it ck}$ = 27MPa	PSC단순, 연결, 합성보의 철근콘크리트 바닥판, 연속 합성보의 2차 바닥판

6.2.2 PS강재

PS강선, PS강연선 및 PS강봉의 품질규격 등은 '도로교설계기준 2.3 사용재료'에 따른다.

6.2.3 그라우트

- (1) 비팽창성 그라우트의 경우 재령 28일 압축강도는 30㎞ 이상
- (2) 팽창성 그라우트의 경우 재령 28일 압축강도는 20㎞ 이상
- (3) 그라우트는 덕트 속을 완전히 충진할 수 있고, PS강재의 녹 발생을 방지하며, PS강재와 충분히 부착할 수 있는 것이어야 한다.

6.3 허용응력

- (1) PS강재의 허용응력
 - ① 프리텐션 부재 프리스트레스 도입 직전 응력
 - 가. 저 릴랙세이션 강연선: $0.75f_{nu}$
 - 나. 응력제거 강연선 $: 0.70 f_{nu}$
 - ② 포스트텐션 부재 프리스트레싱된 긴장재의 정착 직후 응력
 - 가. 정착구에서의 응력 $: 0.70 f_{pu}$
 - 나. 정착장치의 활동에 의한 손실구역의 끝 부분에서의 응력: $0.83f_{py}$
 - 다. 정착구에서의 응력이 위의 값을 초과하지 않으면 정착장치의 활동에 의한 손실과 마찰에 의한 손실을 상쇄하기 위해서 정착 전 짧은 시간 동안 $0.90f_{py}$ 까지 인장응력이 증가되어도 좋다.
 - ③ 손실이 일어난 후 사용하중 상태에서의 응력: $0.80f_{nu}$

- (2) 콘크리트의 허용용력
 - ① 크리프와 건조수축에 의한 손실이 일어나기 전의 일시적 유력
 - 가. 압축응력
 - (가) 프리텐션 부재 : $0.60 f_{ci}$
 - (나) 포스트텐션 부재: 0.55 f a'
 - 나. 인장응력
 - (가) 미리 압축력을 가한 인장구역 : 일시적인 허용용력이 규정되어 있지 않다. 6.3(2)②에 있는 손실 후의 허용용력 참조
 - (나) 그 외 지역
 - 부착된 철근이 없는 인장 구역:1.4 MPa 또는 $0.25\sqrt{f_{ci}}$
 - 계산된 인장응력이 위의 값을 초과하는 부분에서는 비균열단면으로 가정해서 계산된
 콘크리트의 총인장력에 저항하도록 부착된 철근을 배근해야 한다.
 - 이때 최대 인장응력은 $0.50\sqrt{f_{ci}}$ 를 넘지 않아야 한다.
 - ② 모든 손실이 일어난 후 사용하중 상태에서의 용력
 - 가. 압축응력: 0.40 f_{ck}

허용압축용력은 하중조합에 따라 허용용력 증가계수를 적용할 수 있다.

- 나. 미리 압축력을 가한 인장구역에서의 인장유력
 - (가) 부착된 철근(부착된 PS강연선 포함)을 갖는 부재
 - 일반적인 경우

$$0.50\sqrt{f_{ck}}$$

- 해변지역과 같이 혹독한 부식 환경에 노출된 상태: $0.25\,\sqrt{f_{ck}}$
- (나) 부착된 철근이 없는 부재:0
- 다. 그 외 지역에서의 인장응력은 6.3.(2)①에 규정되어 있는 일시적 허용응력으로 제한된다.
- ③ 균열 응력

실험으로부터 얻은 콘크리트의 휨인장강도(파괴계수)를 사용하되, 실험 자료가 없을 경우에는 다음 값을 적용한다.

가. 보통 콘크리트 : $0.63\sqrt{f_{ck}}$

나. 부분 경량 콘크리트 : $0.54\,\sqrt{f_{ck}}$

다. 전 경량 콘크리트 : 0.47 $\sqrt{f_{ck}}$

④ 정착부의 지압 응력

부재 단부에 적절한 철근을 배치한 포스트텐션 부재의 정착장치에 의해 발생되는 콘크리트 의 지압응력은 다음 값 이하로 하여야 한다.

가. 긴장재 정착 직후 $: \ 0.70 f_{ci} \sqrt{\frac{{A_b}'}{A_b}} - 0.2 \leq 1.10 f_{ci}$

나. 프리스트레스 손실 발생 후 : $0.50 f_{ck} \sqrt{rac{{A_b}'}{A_b}} \le 0.90 f_{ck}$

6.4 설계 계산에 관한 일반사항

6.4.1 하중 종류

아중종류는 일반적으로 [표 6.4.1]에 나타낸 것과 같다.

[표 6.4.1] 하중의 종류

주 하 중	고정하중, 활하중, 충격, 프리스트레스 영향, 콘크리트 건조수축 영향, 콘크리트 크리프 영향, 토압, 수압, 부력, 양압력
부 하 중	풍하중, 온도변화의 영향, 온도차의 영향, 지진의 영향
주하중 상당 특수하중	설이중, 지반변동의 영향, 지점이동의 영향, 파압, 원심이중
부하중 상당 특수하중	제동하중, 가설시하중, 충돌하중

6.4.2 부정정력 계산

(1) 일반

부정정구조물에 있어서는 정정구조물의 경우에 쓰는 이중 외에 다음의 이중상태에 대해 단면 검토를 하여야 한다.

- ① 온도변화에 의한 영향
- ② 바닥판과 그 밖의 부분과의 온도차에 의한 영향
- ③ 건조수축에 의한 영향
- ④ 크리프에 의한 영향
- ⑤ 프리스트레스에 의한 2차용력의 영향
- ⑥ 콘크리트의 재령차에 의한 영향
- ⑦ 지진의 영향
- ⑧ 지점이동에 의한 영향
- ⑨ 구조계 변화 (부정정차수의 변화)에 따른 영향

6.4.3 응력계산을 필요로 하는 부재의 상태

콘크리트 및 PS강재의 응력검토는 각각 다음에 기술한 상태 중 가장 불리한 영향을 미치는 하중조합에 대해서 행한다.

- (1) 프리스트레스 도입 직후
- (2) PS강재의 릴랙세이션, 콘크리트의 크리프 및 건조수축을 끝낸 후의 상태
- (3) 특수하중
 - ① 1차 긴장, 2차 긴장으로 나누어 프리스트레스를 주는 경우
 - ② 시공시의 구조형식과 완성시의 구조형식이 다른 경우
 - ③ 프리캐스트 거더를 가설하고 그 위에 가설용 레일을 깔아 거더를 이동시키거나, 가설용 기

재를 운반하는 경우에는 시공의 순서에 따라 가장 불리한 영향을 주는 하중

6.4.4 PS강재의 응력계산

(1) PS강재의 릴랙세이션

'도로교 설계기준 제4장 콘크리트교 4.6.3.4 프리스트레스의 손살에 따른 PS강재의 릴랙세이 션 유력산정

(2) 콘크리트 탄성변형

PS강재 인장에 의한 콘크리트 탄성변형 및 탄성변형에 의한 PS강재 인장유력 감소량을 구할 때의 콘크리트 탄성계수는 프리스트레스 도입시의 콘크리트 압축강도에 대한 탄성계수를 사용한다.

(3) 콘크리트 크리프 및 건조수축

① 콘크리트의 크리프 및 건조수축에 의한 프리스트레스의 감소를 계산하는 경우 크리프 계수 및 건조수축율은 일반적으로 [표 6.4.2], [표 6.4.3]의 값과 같다.

[표 6.4.2] 콘크리트 크리프 계수

지속하중을 재하 했을 때의 콘크리트의 재령(일)		4~7	14	28	90	365
크리프계수	조강시멘트 사용	3.8	3.2	2.8	2.0	1.1
그니그게ㅜ	보통시멘트 사용	4.0	3.4	3.0	2.2	1.3

[표 6.4.3] 콘크리트의 건조수축율

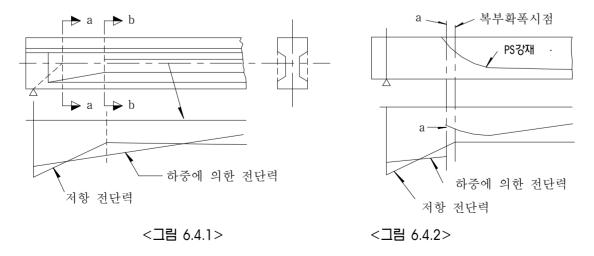
프리스트레스를 도입할 때의 콘크리트의 재령(일)	4~7	28	90	365
건 조 수 축 율	27×10^{-5}	20×10^{-5}	14×10^{-5}	7 × 10 ⁻⁵

(4) PS강재와 쉬스와의 마찰계수는 일반적으로 [표 6.4.4]에 따른다.

단 PS강재 유지간격. 쉬스에 대해서는 각각 '6.6.2(4) PS강재의 유지'를 따른다.

[표 6.4.4] 파상마찰계수(K)와 곡률마찰계수(μ)

		PS 강재의 종류	파상마찰계수 (κ/m)	곡률마찰계수 (μ /rad)
	쉬스내에 ^된 긴장재	강선 긴장재 강봉 긴장재 고강도 스트랜드	0.0033~0.0050 0.0003~0.0020 0.0015~0.0066	0.15~0.25 0.08~0.30 0.15~0.25
부착되지	수지, 방수,	강선긴장재	0.0033~0.0066	0.05~0.15
	피복	고강도 스트랜드	0.0033~0.0066	0.05~0.15
않은	그리스로	강선긴장재	0.0010~0.0066	0.05~0.15
긴장재	미리도포된 경우	고강도 스트랜드	0.0010~0.0066	0.05~0.15


- (5) PS강재의 정착시의 셋트량
 - PS강재 정착시에 셋트를 만들어야 하는 공법에서는 이것에 의한 PS강재 인장유력의 감소를 고려하여야 한다. 정착시의 셋트량은 계산을 하거나 과거의 실적을 통해 결정한다.
- (6) 하중에 의한 PS 강재 유력
 - ① 각각의 하중에 대해 PS강재의 응력증가량을 계산하고, 각 재하단계마다 허용응력이내임을 확인하여야 한다.
 - ② 응력변동이 큰 PS강재는 피로강도를 저하시키게 되므로 활하중에 의한 PS강재의 응력증가 량은 100km로 하고, 이 값을 넘지 않도록 설계한다.

6.4.5 휨모멘트와 축방향력을 받는 부재

- (1) 설계하중 작용시 부재단면에 생기는 콘크리트용력 및 PS강재용력은 본 지침 6.3에서 규정하는 허용용력 이하이어야 한다.
- (2) 부재의 설계모멘트 강도는 극한하중 작용시의 극한모멘트 이상이어야 한다. 즉 휨부재에서는 ' 콘크리트 구조설계기준 제6장 휨 및 압축 6.2.1 설계가정'의 설계가정을 바탕으로 하여 RC의 경우에서처럼 설계모멘트 \emptyset M₆을 계산해야 된다.
- (3) 연속거더 등의 부정정구조물에 있어서는 PS강재가 비교적 중립축 부근에 모여 있는 경우에는 파괴에 대해 위험할 수가 있으므로 이러한 단면에서는 가능한 한 PS강재를 분산배치한다.
- (4) 강도 검토 시, 프리스트레싱에 의해 유발되는 2차 단면력(하중계수 1.0)을 고려해야 한다.

6.4.6 부재용력의 계산위치

- (1) 부재용력의 계산은 지점부근, 단면력 최대·최소위치, 단면변화위치 등 필요한 곳에 대해 계산한다.
- (2) 전단용력의 검토는 지점에서 복부높이의 ½인 곳과 기둥과 바닥판이 접속하는 곳은 바닥판 두 메의 ½ 단면위치 외에도 복부확폭시점이 위험하게 되는 수가 자주 있으므로 이 부분에 대해 서도 충분히 검토하여야 한다(<그림 6.4.1>의 b-b단면). 또, PS강재를 절곡시켜 플랜지 상면에 정착하는 경우에는 이 정착위치에 대해서도 사인장용력의 검토를 하여야 한다.(<그림 6.4.2>의 a-a단면).

6.4.7 전단력이 작용하는 부재의 용력계산

- (1) 전단설계는 '도로교 설계기준 제4장 4.6.3.8 전단 및 비틀림' 또는 '콘크리트 구조설계기준 제7 장 전단과 비틀림 7.3.2 프리스트레스트 콘크리트 부재에서 콘크리트에 의한 전단강도'에 의해 산출된 전단강도를 따른다.
- (2) 콘크리트의 공칭전단강도는 (1)에 의해 계산된 휨전단균열 발생시와 복부전단균열 발생시의 공칭전단강도 중 작은 값을 택한다.
- (3) 설계하중 작용시의 사인장용력을 조사하는 경우 검토를 행하는 단면위치는 다음과 같다.
 - ① 단면의 중립축 위치
 - ② 부재의 단면폭(b)이 최소로 되는 위치
 - ③ 수직용력 f_c 가 0이 되는 경우

6.4.8 사인장철근 산정

- (1) 사인장 철근의 적용은 '콘크리트구조설계기준 제7장 전단과 비틀림 7.3 부재의 전단강도 계산 및 철근상세'에 따르며 '도로교 설계기준 제4장 콘크리트교 4.4.6 전단에 대한 설계'에 의해 철근량을 계산한다.
- - ① 슬래브와 기초판
 - ② 콘크리트 장선구조
 - ③ 전체 높이가 250mm 이하이거나 I형보, T형보에 있어서 그 높이가 플랜지 두께의 2.5배 또는 복부폭의 1/2중 큰 값 이하인 보

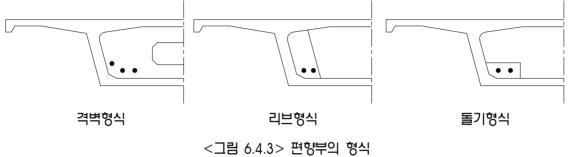
6.4.9 비틀림모멘트가 작용하는 부재의 응력계산

(1) 프리스트레스트 콘크리트 부재의 경우 설계비틀림모멘트(Tu)가

$$\phi rac{1}{12} \, \sqrt{f_{ck}} \, rac{A_{cp}^2}{p_{cp}} \, \sqrt{1 + rac{f_{pc}}{rac{1}{3} \, \sqrt{f_{ck}}}}$$
 를 초과하는 경우에는 '도로교 설계기준 제4장 콘크리트교

4.4.7 비틀림에 대한 설계'에 의해 비틀림의 영향을 전단과 휨에 포함시켜 설계한다.

6.4.10 외부 긴장재(external tendon)의 구조

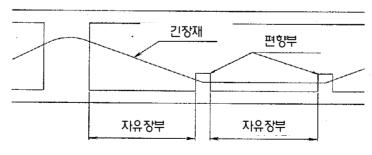

- (1) 외부 긴장재 정착부의 설계
 - ① 외부 긴장재의 정착부는 PS강재의 긴장력을 주거더 전체에 영향을 미치도록 주거더에 배치된 외부 긴장재의 제원 및 본수를 고려하여야 한다.
 - ② 외부긴장재 정착시 지압, 할렬, 배면의 인장 등의 국부용력이나 국부적인 휨 또는 전단력에 대해서도 안전성을 확보하여야 한다.
 - ③ 외부 긴장재는 지점 지점격벽 혹은 격벽(다이아프램, 리브)을 설치하고 정착하는 것을 표준 으로 한다.

5-6-8 | 제5편 구조물공

④ 정착부 부근의 보강은 '도로교 설계기준 4.6.3.9 포스트텐션 부재의 정착구역'에 따라 보강 한다.

(2) 편향부의 설계(deviation block)

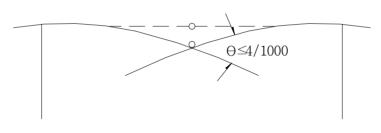
- ① 외부 긴장재의 배치형상을 유지하고 편향력을 거더에 전달하는 편향부는 모든 작용에 대하 여 편향구의 변형이나 분리 등이 있기 때문에 거더 콘크리트와 일체화해야 한다. 그 형태는 격벽, 리브, 돌기형식이 일반적이다.
- ② 편향부에는 예비공을 설치하여야 한다.



(3) 구조세목

- ① 정착구 부근의 긴장재에 축방향 이외의 힘이 작용하지 않도록 정착구의 지압면으로부터 소 정의 구간을 직선으로 배치해야 한다.
- ② 단부가로보나 거더에 외부긴장재를 정착하는 경우에는 정착구 등의 점검작업 등을 실시할 수 있는 공간을 거더 사이에 마련하는 등, 점검할 수 있도록 하여야 한다.
- ③ 외부 긴장재의 정착부 및 편향부(deviation block)는 PS강재에 국부적인 휨이 생기지 않는 구조로 해야 한다.

④ 방진장치


- 가, 외부 긴장재는 유해한 진동이 생기지 않도록 해야 한다.
- 나. 진동의 가능성이 있는 경우는 궁진하지 않게 방진대책을 검토해야 한다.
- 다. 진동해석을 하지 않는 경우에 방진장치의 간격은 지간장의 1/4 이내로 하는 것이 좋다.

<그림 6.4.4> 긴장재의 자유장부

6.5 처 짐

- (1) 설계 계산시 각종 하중에 의한 처짐을 반드시 고려한다.
- (2) 상하방향의 크리프처짐은 단면에 생기는 응력분포상태와 그 크기에 영향을 미치며 특히 고정 하중과 프리스트레스에 의한 응력분포에 영향을 준다.
- (3) 프리텐션거더의 경우 고정하중, 프리스트레스 및 크리프에 의한 처짐을 고려하고 받침 거치높이 또는 거더상부면의 형상치수 등을 설계계산시에 검토해야 한다.
- (4) 허용처짐에 대한 규정은 '설계기준 제4장 콘크리트교 4.4.9.5 처짐제어 및 계산을 따른다.
- (5) 켄틸레버시공법에 의해 시공하고, 중앙에 힌지를 두는 형식인 경우에는 중앙 힌지부의 꺽이는 각이 문제가 되지만, 이 꺽이는 각은 고정하중, 활하중, 온도차, 크리프 등이 작용하는 경우 4/1000를 넘어서는 안된다(<그림 6.5.1>)
- (6) <그림 6.5.1>과 같은 캔틸레버거더인 경우 처짐곡선은 근사적으로 포물선이 되고, 중앙힌지 부근의 크리프 처짐이 특히 큰 문제가 되므로, 이러한 경우에는 선단부근의 단면융력분포는 가능한 거더 분포에 가까운 상태가 되도록 PS강재 배치를 검토하는 것이 좋다.

<그림 6.5.1>

- (7) RC 및 PSC교량의 경우 "콘크리트 교량 가설특수공법 설계시공·유지관리지침"의 각 교량별 처짐관리항을 참조로 한다.
- (8) 프리스트레스를 도입하는 동안에 발생하는 수축은 "도로교 설계기준 제4장 콘크리트교 4.6.3.4 프리스트레스의 손실", ③ 콘크리트의 탄성수축에 의한 손실량"에서의 응력으로부터 계산하여도 좋다.

6.6 구조 세목

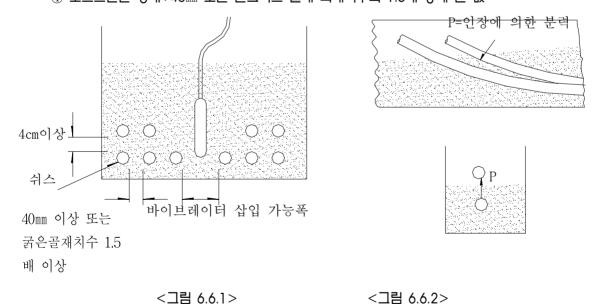
6.6.1 철근의 배치

- (1) 철근의 최소간격, 덮개, 갈고리 및 이음에 대해서는 다음을 따른다. 다음의 콘크리트 최소 피복두께는 철근 및 PS강재 모두에 적용된다.
 - ① PS강재 및 주철근: 40mm
 - ② 슬래브 철근

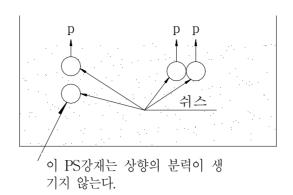
가. 슬래브의 상부: 40㎜, 제빙장치가 사용될 경우: 50㎜

나. 슬래브의 하부:30mm

5-6-10 | 제5편 구조물공


- ③ 스터럽, 전단철근, 띠철근:30㎜
- ④ 해방제가 사용될 때나 부재가 염수 또는 화학물질에 노출되는 곳에서는 콘크리트의 피복두 께를 증가해야 한다.
- (2) PS부재의 철근은 조립철근을 제외하고 모두 이형철근(SD30이상)으로 하고 최소직경은 10mm 이상으로 한다
- (3) 콘크리트의 응력집중 또는 단면이 급변하는 곳에는 보강철근을 배치하여야 한다.

6.6.2 PS강재의 배치


- (1) PS강재의 간격은 다음을 따른다. 또한 봉바이브레이터 삽입을 위한 간격을 1개소 이상 두는 것을 원칙으로 한다.
 - ① PS강재의 중간부에 있어서는 일반적인 경우 <그림 6.6.1>처럼 쉬스를 배치하여야 한다.
 - ② 콘크리트 다짐이 가능하고 쉬스가 변형, 또는 파괴되지 않는다는 것이 확인된 경우에 쉬스를 연직방향 또는 수평방향으로 접촉시켜서 배치해도 좋다.
 - ③ 프리텐션 강재: 콘크리트 골재 최대치수의 4/3 배 이상이어야 하며, 강연선의 최소 중심간 간격은 다음과 같다.

강연선 지름	간격
15.2mm	50mm
11.1mm, 12.7mm	45mm
9.5mm	40mm

④ 포스트텐션 강재:40mm 또는 콘크리트 골재 최대치수의 1.5배 중에 큰 값

⑤ 포스트텐션 강재가 늘어지거나 편향되는 경우 포스트텐션 덕트는 최대 3개의 다발로 묶어도되나, 이 때 6.6.2 (1)항에 규정된 강재의 최소간격을 부재 단부 1m내에서는 유지되어야 한다.

<그림 6.6.3>

- (2) PS강재의 덮개는 6.6.1의 철근의 덮개 기준을 따른다.
- (3) PS강재의 이욤위치 한 곳에 집중되지 않도록 한다.
 - ① 일반적으로 1개소당, 전체 개수의 1/2 이하로 이음을 한다.
 - ② 이음위치는 각 제품 규격에 맞도록 사용하는 것이 좋다.
- (4) PS강재는 시공시 변위를 일으키지 않도록 충분이 고정시켜야 한다. PS강재의 유지간격은 원칙 적으로 [표 6.6.1]의 값으로 한다.

PS강재의 종류	유지간격 (m)
P S 강 선	1.0 ~ 1.5
P S 강 연 선	1.0 이하
P S 강 봉	1.5 ~ 2.0

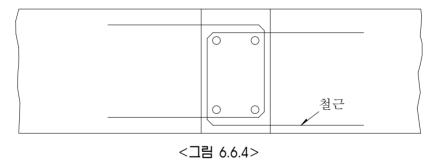
[표 6.6.1] PS강재의 유지간격

6.6.3 정착부의 설계

- (1) 정착장치의 위치
 - ① 정착장치의 프리스트레스의 분포는 시험결과에 의하면 거의 45° 전후이지만 안전을 감안하여 $\tan \beta = \frac{9}{3}$, 즉 $\beta = 33^\circ$ 40° 으로 한다.
 - ② 부재의 중간부에 정착장치를 설치하는 경우는 활하중에 의한 유력변동이 작은 곳에 위치를 택하여야 한다.
 - ③ 정착장치는 거더의 복부에 두는 것을 원칙으로 하고, 상부플랜지, 하부플랜지 혹은 복부단면에 붙여서 정착하는 경우에는 정착장치부근에 생기는 인장용력에 대해 충분히 보강함과 동시에 방청처리가 필요하다.
 - 가. 포스트텐션 방식의 프리캐스트거더 등으로서 PS강재를 구부려 올려 상부 플랜지 상단에 정착하는 경우 구부려 올린 PS강재는 전 PS강재의 1/3 이하의 개수로 한다.
 - ④ 정착부에 작용하는 모든 힘은 정착부로부터 정착구역의 단부까지의 하중경로를 따르는 스트 럿-타이모델을 적용하여 결정하여도 좋다. 포스트 텐션 정착부의 검토는 '도로교 설계기준 해설(2003) 4.6.3.9'에 따른다.

(2) 지점에서 거더까지의 거리는 일반적인 경우 [표 6.6.2]에 나타낸 값을 표준으로 한다.

[표 6.6.2] 지점에서 거더까지의 거리


단위: mm

지간 ℓ(m)	ℓ ≤ 10	10 < ℓ ≤15	15 < ℓ ≤20	20 < ℓ ≤25	25 < ℓ ≤50
포스트텐션거더			300	350	400
프리텐션거더	200	300	350		

(주) 사교의 경우 사각의 정도에 따라 거더 중심선에서 50mm 정도 늘려잡는다.

6.6.4 프리캐스트 블럭 조합에 대한 설계

- (1) 이음의 위치
 - ① 이음을 설치하는 위치는 휨모멘트 및 전단력이 비교적 작은 위치로 한다.
- (2) 이음의 종류
 - ① 현장타설 이음방식:이음부의 콘크리트가 완전히 경화한후 프리스트레싱하여 접합하는 방법으로 이음부의 폭은 0.15~1.0m의 범위 것이 많이 사용된다.
 - ② 모르터 이음방식:이음폭은 10~40㎜를 표준으로 한다.
 - ③ 그라우트 이음방식:이음폭이 5 ~25㎜를 표준으로 한다.
 - ④ 전단키 이음방식: 프리캐스트 블록의 전단키와 접착재를 사용하여 접속하는 것.
 - 가. ①②③의 경우 블럭의 이유면을 충분히 거칠게 하여 콘크리트의 부착효과를 중대시켜야한다.
 - 나. ①의 이음으로 하는 경우 각 블럭에서 철근을 빼내어 이것을 충분히 접속시켜야 한다. 철근의 맞댐길이를 충분히 취할 수 없는 경우에는 <그림 6.6.4>와 같은 접속방법으로 해도 좋다.

다. 접착제를 이용하는 경우에는 접착성, 내구성, 콘크리트에 미치는 영향, 콘크리트로 인한 영향 및 사용가능 시간, 전단력에 대해서 충분히 검토하여야 한다.

(3) 이유 구조

- ① 이유면은 압축응력에 대해 90°로 하는 것을 원칙으로 하며 75°이하로 해서는 안된다.
- ② 블럭 이음면에 가능한 한 가까운 위치에 스터럽을 설치함과 동시에 그 간격을 이음면 근처에서는 좁게 하는 것이 좋다.
- ③ 콘크리트를 충진하는 이음에는 스터럽을 배치하여야 한다.

④ 접착제를 사용하는 이욤인 경우 이욤면에 적당한 전단키(key)를 설치하여 보강철근 또는 연 직방향 PS 강봉 등으로 보강하여야 한다.

(4) 이음부의 설계

① 설계하중 작용시 및 계수하중 작용시의 응력 검사 이외에 휨인장응력에 대한 검사를 하여야 한다. 이 경우의 허용휨인장응력은 2.5 Ma로 한다.

(가) 보 : f_o + 1.7 f₊

(나) 바닥판 : $f_{o} + 1.7 f_{ts} + 0.5 f_{tg}$

여기서,

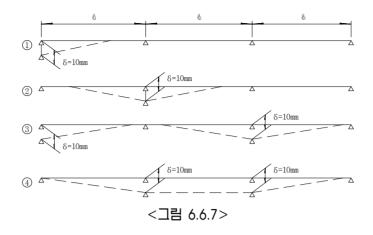
 f_{o} : 활하중 및 충격이외의 주하중에 의한 콘크리트의 휨인장응력(MPa)

f,: 활하중 및 충격에 의한 콘크리트의 휨인장응력(MPa)

 f_{ts} : 활하중 및 충격에 의한 바닥판으로서의 콘크리트의 휨인장응력(M_{to})

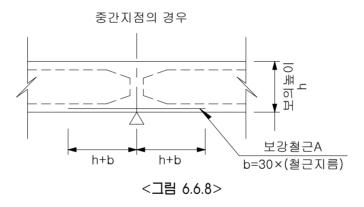
 $\mathbf{f}_{t\sigma}$: 활하중 및 충격에 의한 보로서의 콘크리트의 휨인장응력(MPa)

② 프리캐스트 블록을 접합시키기 위하여 <그림 6.6.5>와 같이 전단키를 설치하는 것으로 한다. 전단키는 전단력에 대하여 설계하는 것으로 한다.



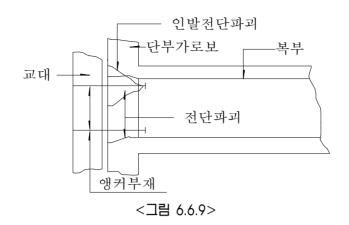
- 가. 콘크리트의 전단용력은 $\nu={
 m V/A_c}$ 이며, 콘크리트의 허용전단용력은 $0.08\sqrt{{
 m f_{ck}}}$ 이하인 경우에는 가외철근을 배치할 정도의 보강을 하면 된다.
- 나. 콘크리트의 전단응력이 허용전단응력 $0.08\sqrt{f_{ck}}$ 를 초과하고 $0.68\sqrt{f_{ck}}$ (최대값) 이하인 경우에는 $A_s=(V-A_c\tau_a)/f_{sa}$ 에 의해 계산된 철근량을 전단키에 배치하여야 한다

6.6.5 연속거더교 중간지점부의 휨모멘트 및 PS강재의 배치


(1) 중간지점 위의 휨모멘트

- ① 연속거더 중간지점의 휨모멘트에 대한 설계단면을 취하는 방식 및 설계 휨모멘트는 '도설 4.11.3 구조해석'에 따라 감소시킬수 있다.
- ② 부정정 구조물에서 지반의 압밀 침하등으로 인하여 장기간에 걸친 지점의 이동 및 회전의 영향은 고려을 고려하여야 할 경우 최종침하량을 추정하여 단면력을 산정하여야 한다. 통상의 경우 부등침하량 δ =10mm로 추정하여 거더에 생기는 휨용력을 검토하여도 좋다.

6.6.6 지진시 발생하는 고정받침 부근의 응력 검토


- (1) 고정받침이 지점 중간에 있는 경우
 - ① 지진시에는 고정받침 위에 생기는 응력을 주거더의 도심위치와 받침과의 사이에 작용하는 컴모멘트에 대해 계산하고, 보강철근을 구한다.
 - ② ①에 의해 구한 보강철근을 주거더의 아래 플랜지 하측에 배치하며 그 배치 범위는 <그림 6.6.8>에 따른다.

- (2) 고정받침이 단부에 있는 경우
 - ① 받침에 의한 수평력 H_o에 의해서 거더에 생기는 전단파괴면을 45°라 가정하고 응력을 검토한다.
 - ② 단 직교 단순거더로 지점에서 보까지의 거리를 [표 6.6.2]에 나타낸 값으로 한 경우는 D16 의 철근을 교축방향에 150mm 이하의 간격으로 보강철근을 배치해 놓으면 좋다.

6.6.7 지진시 단부 가로보의 설계

(1) 상부구조물의 지진시 수평력을 <그림 6.6.9>처럼 교대에 전달하는 가로보 단면은 휨모멘트, 전단력에 대해 안전하게 하여야 한다.

(2) 프리캐스트 등에서 주거더와 기로보가 연결되는 경우는, 이음면에서 프리스트레스에 의한 마찰력과 전단철근으로 저항할 수 있게 하여야 한다.

6.6.8 인장철근의 산정

- (1) 프리스트레스트교에서 인장철근을 고려하여 휨강도를 산정할 수 있으며 그때 콘크리트 융력은 6.3을 만족하여야 한다.
- (2) PS강재에 주어지는 인장력은 설계시 고려한 값에서 [표 6.6.3]에 나타낸 양만큼 감소한 것으로 본다.
- (3) 바닥판인 경우 철근의 중심간격은 100㎜이상, 300㎜이하로 한다. 다만, 바닥판 지간방향의 인 장 주철근의 중심간격은 바닥판의 두께를 넘어서는 안된다.
- (4) 박스단면의 하부 슬래브인 경우 플랜지 단면적의 최소 0.3%에 해당하는 철근을 거더의 지간 과 평행하게 하부 슬래브에 배근해야 한다. 이때 철근은 한 층으로 배근해도 좋으며, 철근의 간격은 450mm를 넘지 않아야 한다.

PS강재의 종류	감 소 량
강 선	5 %
강 연 선	5 %
강 봉	3 %

[표 6.6.3] PS강재 인장력 감소량

6.7 슬래브교

6.7.1 직슬래브교

- (1) 휨모멘트의 계산은 '도로교 설계기준 제4장 콘크리트교 4.7.5 바닥판의 설계 휨모멘트 및 용력의 검사'에 의하여 구하고 단면력은 원칙적으로 판이론에 의한 실용적 방법을 이용하여 프레임 해석을 실시하여 계산한다.
- (2) 연속슬래브, 라멘슬래브교와 같이 지지조건이 복잡한 경우 또는 곡선교와 사교같은 경우에는

5-6-16 | 제5편 구조물공

격자이론과 유한요소법에 의해 해석하여도 좋다.

(3) 지간방향의 응력계산은 바닥판을 하나의 보로 생각하여 휨모멘트를 계산한다.

6.7.2 경사 슬래브교

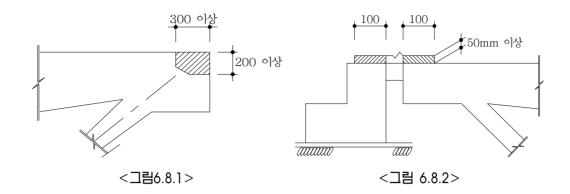
- (1) 경사슬래브의 휨모멘트 및 받침반력에 대해서는 다음과 같이 한다.
 - ① $\ell/b \le 1.5$ 인 경우로 탄성받침을 사용하는 경우는 격자구조이론에 의해 구한다.
 - ② ℓ/b > 1.5인 경우는 격자구조이론에 의해 구한다.
 - ③ 곡률이 큰 곡선교나 사각 70° 이하의 교량인 경우는 격자구조이론에 의해 구하는 것이 바람직하다.
- (2) 교축방향 및 교축직각방향의 PS강재의 배치는 '도로교 설계기준 제4장 콘크리트교 4.8.4 구조 상세'의 관련항목에 따른다.
- (3) 사판의 교축방향 주모멘트(M1) 및 이와 직교하는 방향의 모멘트(M2)는 경사의 영향을 고려하여 구해야 한다.

6.8.1 일반사항

PSC π 형라멘교(이하 π 라멘교)는 (1), (2)에 나타낸 단면 및 구조형식의 교량을 말한다.

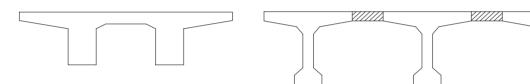
(1) 속빈슬래브 단면 (현장타설공법)

(2) T형단면 (프리캐스트 블럭공법)



(3) 프리캐스트 부재의 범위는 거더와 단부사재로 하고, 수직재 및 변형 π 라멘교의 중앙 경간사 재에 대해서는 현장타설로 한다.

6.8.2 구조세목


- (1) 현장타설공법의 π 라멘교에서 사재단부의 절단치수는 <그림 6.8.1>에 따른다.
- (2) 성토부 또는 간선도로에 사용하는 경우 설치부 침하에 의해 발생하는 불연속성을 막고 차량의 충격력으로 교량단부(PS강재 정착부 부근)를 보호하기 위해 기초말뚝이 있는 소교대 등을 고려한다.<그림 6.8.2>

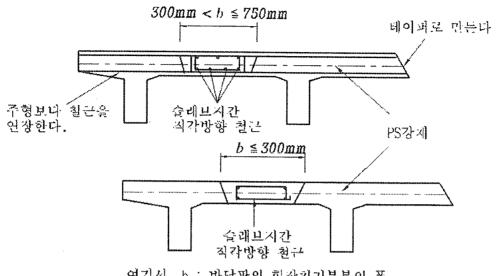
6.9 T형교

6.9.1 T형교의 구분

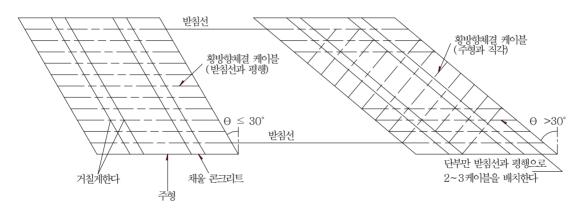
T형교란 <그림 6.9.1>과 같은 형식의 교량을 말한다.

(a) 교체전폭을 일체로 해서 콘크리트를 타설한 것.

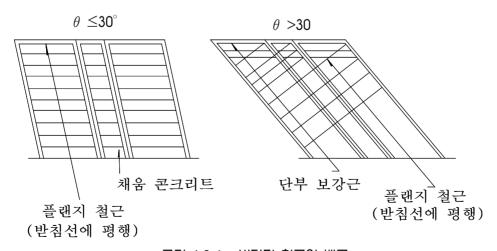
<그림 6.9.1>


6.9.2 바닥판의 휨모멘트

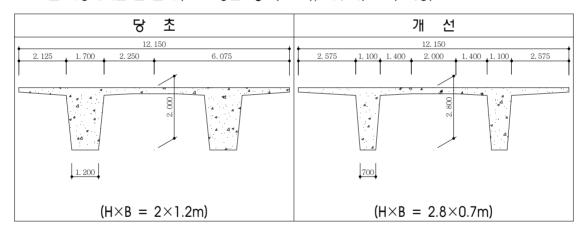
(1) 바닥판의 휨모멘트는 '도로교 설계기준 제4장 콘크리트교 4.7.5 바닥판의 설계 휨모멘트 및 용력의 검사에 따른다.


6.9.3 바닥판의 구조세목

- (1) 바닥판을 횡방향 체결하는 PSC구조인 경우 최소 바닥판 두께는 200mm 이상으로 하고, RC 구조로 하는 경우는 RC 구조편을 따른다. ('도설 4.7.4.1 철근콘크리트 바닥판, 4.7.4.2 프리스트 레스트 콘크리트 바닥판 참조)
- (2) PSC구조의 바닥판으로 하는 경우는 활이중 이외의 주이중 작용시에 인장용력이 생기지 않도록 한다.
- (3) 현장타설로 시공되는 바닥판의 폭은 일반적으로 750㎜ 이하이며 프리캐스트 보의 플랜지로부터 경이음길이 이상 내민 철근에 의하여 결합하는 것이 좋다.
- (4) 휭방향으로 연결되는 PS강재가 배치된 바닥판이 현장타설로 시공될 때 그 폭이 300mm 이하인 경우 철근을 내밀지 않아도 좋다.
- (5) 바닥판 채움 콘크리트부에는 교축방향으로 D13 이상의 철근을 250mm 이하의 간격으로 바닥 판의 상하에 배치하여야 한다.


(6) 바닥판 횡방향체결 PS강재의 배치는 <그림 6.9.2>와 같이 한다.

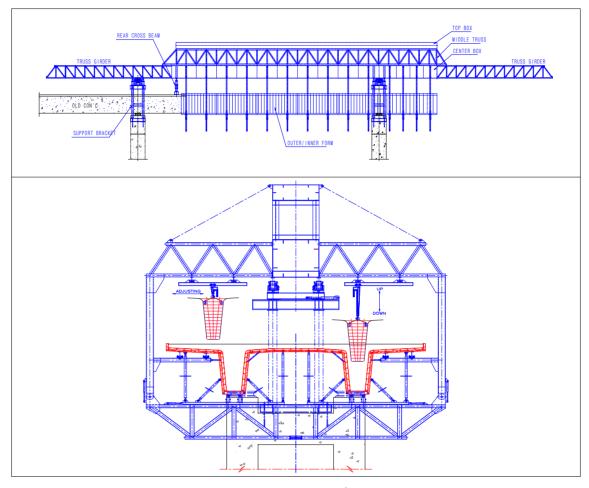
여기서, b: 바닥판의 현장치기부분의 폭 <그림 6.9.2>


<그림 6.9.3> 횡방향체결 PS강재의 배치

<그림 6.9.4> 바닥판 철근의 배근

6.9.4 거더의 구조세목

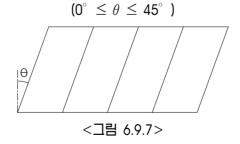
- (1) 프리텐션 보인 경우
 - ① 거푸집의 전용을 고려하여 상부플랜지, 하부플랜지 저면은 모두 교면 횡단경사에 평행하게 하고 복부는 상하 플랜지에 직각으로 한다.
 - ② 교면의 횡단경사가 커지면 상부플랜지 단부에 큰 응력이 생기거나 횡방향 좌굴, 가설시의 전도 등 위험이 생기므로 충분히 검토할 필요가 있다.
 - ③ 교면경사가 큰 경우(4% 정도 이상)에는 포스트텐션의 경우와 같이 복부는 수직으로 하는 것이 좋다.
- (2) 포스트텐션 보인 경우
 - ① 거더의 상부플랜지는 교면 횡단경사와 평행으로 하고 하부플랜지 저면은 수평으로 한다.
 - ② PS강선의 정착위치는 보의 단부를 원칙으로 하지만 응력상 여유가 있는 경우는 상부플랜지에 정착시켜도 좋다. 이때 상부플랜지 상면에 정착시키는 PS강재 개수는 전체 PS강재의 1/3이하로 한다.
- (3) 거더는 가설시의 경사, 횡방향 전도, 좌굴 등에 대해서 충분히 검토하여야 한다.
- (4) Double T Beam 거더는 시공성 및 수화열에 대한 안정성을 확보하기 위해 과다한 복부 두께 를 사용해서는 안 된다.(50m 경간: 형고(2.8m), 복부폭(0.7m) 적용)1)



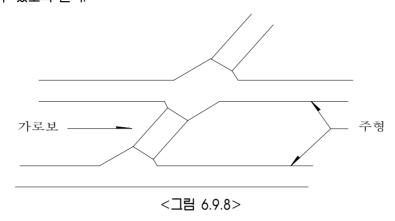
<그림 6.9.5> T형 거더 표준단면 개선

(5) Double T Beam 거더는 MSS와 같은 장비를 사용함으로써 공기를 단축하며 하부 동바리 시 공을 하지 않으므로 안전성을 향상 시킬수 있다.²⁾

¹⁾ Double-T Beam 개선방안 검토(설계설 13201-463, 2001.9.14)


²⁾ Double-T Beam 개선방안 검토(설계설 13201-463, 2001.9.14)

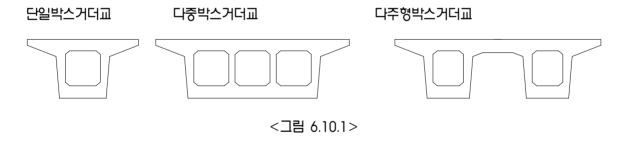
<그림 6.9.6> MSS 형식


6.9.5 가로보의 구조세목

- (1) 거더의 지점에는 반드시 가로보를 설치하여야 한다. 특히, 하나의 지간당 한곳 이상 중간 가로보를 설치하며 그 간격은 15.0m 이하로 한다.
- (2) 가로보의 복부최소두께는 200㎜로 한다.
- (3) 중간 가로보의 배치는 일반적으로 받침선과 평행하게 배치해도 좋다.

- ① 일반적으로 가로보를 직각으로 배치하면 사교의 특징인 부반력이나 비틀림이 현저히 나타나 므로, 45°까지는 평행하게 배치하는 것으로 한다.
- ② 단, 바닥판에 대해서는 경사바닥판이 되므로 이 영향을 고려한다.
- (4) 사각이 $heta > 30^\circ$ 인 경우 거더복부를 <그림 6.9.8>과 같은 형상으로 하여 가로보를 직각으로

연결할 수 있도록 한다.



(5) 단부가로보는 축방향이중 및 지진시 수평력에 대해서 안전하여야 한다.

6.10 박스거더교

6.10.1 검토 개요

거더 및 가로보의 단면력 계산은 다음에 따르는 것을 원칙으로 한다.

- (1) 단일 박스거더교의 경우 국부적 검토를 제외하고 보이론에 따라도 좋다.
- (2) 다중 박스거더교의 경우는 휨 비틀림이론 혹은 임의형 격자이론에 따른다.
- (3) 다주형 박스거더교의 경우 임의형 격자이론에 따른다.
- (4) 사각 θ 가 θ >30° 인 경우 원칙적으로 사교로서 취급한다. 이때 단면력의 산정은 임의형 격 자이론에 따른다.
- (5) 중방향 구조해석에 사용하는 바닥판 유효폭은 도설 4.15.6.2를 따른다.

6.10.2 횡방향 설계

- (1) 횡방향설계는 바닥판을 포함하여 판이론에 근거한 정밀구조 해석을 하는 것이 좋다.
 - ① 차륜하중은 차륜 접지폭은 물론, 바닥판 슬래브의 두께까지 고려하여 최대한 분포시킨다.
 - ② 정밀구조해석이 어려운 경우 도설 4.15.6.2의 (4)항에 따라 해석하여도 좋다.
- (2) 경사진 복부 및 보강리브가 있는 박스거더교의 하부플랜지 및 복부 단면력은 복부의 경사와 보강리브의 영향을 고려하여 구하는 것을 원칙으로 한다.

6.10.3 바닥판의 설계

- (1) 바닥판의 최소 두께는 6.10.5 구조 세목 및 도로교 설계기준 제4장 콘크리트교 4.7.4 바닥판의 최소두께 에 따른다.
- (2) 바닥판의 휨모멘트는 도로교 설계기준 제4장 콘크리트교 4.7.5 바닥판의 설계 휨모멘트 및 용력의 검사에 따른다.
- (3) PS강재를 바닥판 내에서 절곡하는 경우나 복부 측면에서 휘어 정착시키는 경우 이에 의해 생기는 프리스트레스의 분력을 가산해서 유력을 검토하여야 한다.
- (4) 바닥판의 지간에 대해 직각으로 배치하는 철근은 다음을 따른다.
 - ① 집중하중으로 작용하는 활이중을 수평방향으로 분산시키기 위해 정모멘트가 발생하는 바닥 판 하부에는 주철근의 직각방향으로 배력철근을 배치해야 한다.
 - ② 배력철근은 정모멘트에 의해 요구되는 주철근량에 대해 다음과 같은 백분율을 적용한 철근 량으로 한다.
 - 가. 주철근이 차량진행방향에 직각인 경우

백분월=
$$\frac{120}{\sqrt{L}}$$
과 67% 중 작은 값 이상

여기서. L = 바닥판의 지간(m)

나. 주철근이 차량진행방향에 평행할 때

백분월=
$$\frac{55}{\sqrt{L}}$$
과 50% 중 작은 값 이상

- ③ 주철근이 차량진행방향에 직각인 경우, (2)항에서 산정된 배력철근을 바닥판 지간 중앙부의 1/2 구간에 배근하며, 나머지 구간에는 산정된 배력철근량의 50% 이상 배근하도록 한다.
- ④ 배근되는 배력철근량은 온도 및 건조수축에 대한 철근량 이상이어야 한다. 이 때 바닥판 단면에 대한 온도 및 건조수축 철근의 비는 0.2%이다.

6.10.4 하부플랜지 및 복부의 설계

하부플랜지 및 복부의 설계는 다음과 같이 한다.

- (1) 바닥판 설계를 포함한 횡방향 설계를 위해서는 판이론에 근거한 정밀구조해석을 하는 것이 좋다.
- (2) 복부의 휨모멘트에 대하여 배치된 철근량의 1/2은 교축방향의 설계를 할 때 사인장철근으로 간주하여도 된다.

$$A_s = A_{s1} + 0.5A_{s2} + A_t$$

6.10.5 거더의 구조세목

(1) 플랜지의 두께

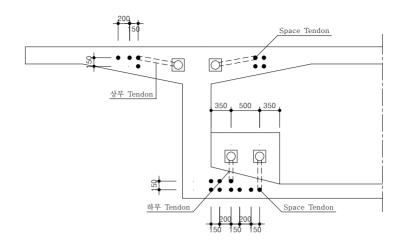
플랜지의 최소 두께는 다음과 같이 한다.

① 프리스트레스 콘크리트

가, 상부플랜지 - 복부 또는 복부헌치 사이의 순경간의 1/30, 200㎜ 이상

나. 하부플랜지 - 복부 또는 복부헌치 사이의 순경간의 1/30, 140㎜ 이상

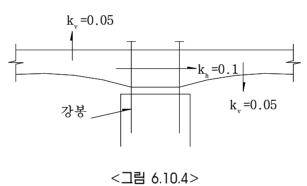
- ② 철근 콘크리트
 - 가. 상부플랜지 복부 또는 복부헌치 사이의 순경간의 1/16, 220mm 이상 나. 하부플랜지 - 복부 또는 복부헌치 사이의 순경간의 1/16, 140mm 이상
- (2) 복부의 두께
 - ① 복부의 두께는 300㎜ 이상으로 한다.
 - ② 복부두께를 주거더방향으로 변환시킬 때는 북부두께 차이의 12배 이상의 길이를 변화구간 으로 확보해야 한다.
- (3) 복부의 종방향 철근은 건조수축 및 온도철근(0.2%) 이상으로 전단면에 골고루 배치해야 한다.
- (4) 하부슬래브의 중방향 및 횡방향 철근의 배근은 다음을 따라야 한다.
 - ① 플랜지 단면적의 최소 0.3%에 해당하는 철근을 거더의 지간과 평행하게 하부 슬래브에 배근해야 한다. 이때 철근은 한 층으로 배근해도 좋으며, 철근의 간격은 450㎜를 넘지 않아야한다.
 - ② 슬래브 최소 두께로부터 계산한 플랜지 단면적의 최소 0.5%에 해당하는 철근을 거더의 지 간에 직각으로 하부 슬래브에 배근해야 한다. 이 철근은 상하 양면에 배치하고 철근의 간격 은 450mm를 넘지 않아야 한다. 하부 슬래브의 모든 휭철근은 외측 거더 복부의 외측면까지 연장시켜서 정착해야 한다.
- (5) 교량 건설후 고정하중의 증가, 교량의 균열 발생, 처짐조절을 위하여 PS 강재를 추가배치할 수 있도록 예비 Duct의 설치가 필요하며 시공의 용이성 등을 감안하여 Box 내부 복부판과 하부 슬래브 접속부 공간을 이용하는 External Tendon 설치안이 바람직하다.3)



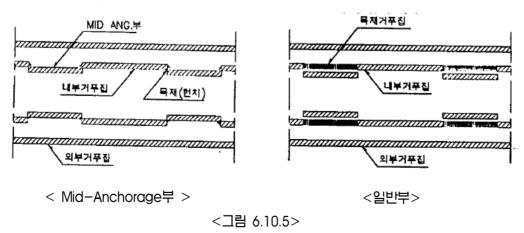
<그림 6.10.2> External Tendon 설치 개념도

(6) 캔틸레버 공법에서 시공중 오차를 보정하기 위해 사용하는 여유 긴장재는 Internal Tendon으로 설치하며 이때, 강선은 삭제하고 덕트만 매입하는 것이 좋다.4)

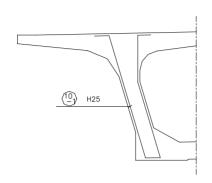
³⁾ 유지보수용 Tendon 설치방안(설계일 16210-331, 1996.10.9)

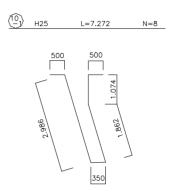

⁴⁾ PSC Box Girder (FCM) 여유긴장재 검토(설계이 13202-408, 2001.8.13)

<그림 6.10.3> 여유 긴장재 배치도

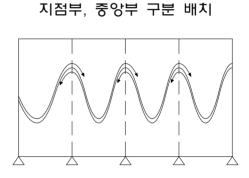

6.10.6 캔틸레버공법의 기둥머리부 연결구조 검토

캔틸레버공법에서의 기둥머리부 강봉의 계산은 작업차에 의한 불균형모멘트에 대해 허용용력 이내, 지진시는 불균형모멘트 및 <그림 6.10.4>에 나타낸 지진력에 대해서 파괴되지 않도록(f_{pu} 이하) 설계하여야 한다.


6.10.7 ILM공법의 구조 세목

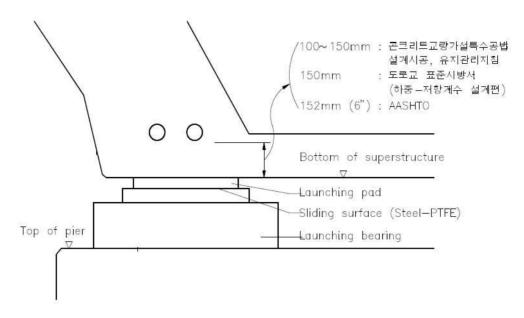

(1) Mid-Anchorage부는 거푸집을 개선하여 일체 시공하여 시공성을 개선하는 것이 좋다.5)

5) ILM 중간격벽 및 Mid Anchorage부 개선(설계기 16210-335, 1995.12.26)


- (2) 중간 격벽부는 Coupling을 이용하는 것이 시공성 향상에 좋다.
- (3) 상연단에 발생하는 인장용력이 콘크리트의 허용인장용력 범위내에 발생하면 구조적인 문제가 발생하지 않으므로 복부철근 폐합스트럽을 삭제해도 좋다.6)

<그림 6.10.6> 복부 철근 개선안

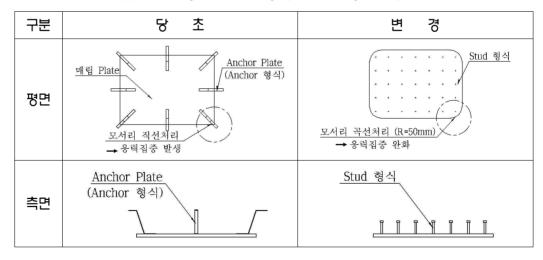
(4) 1차 강연선의 경우 표준구간과 응력 최대 구간을 구분하여 강선 배치하며 2차 강연선의 경우 지점부와 지간 중앙부를 구분하여 강선 배치하는 것이 바람직하다.7)

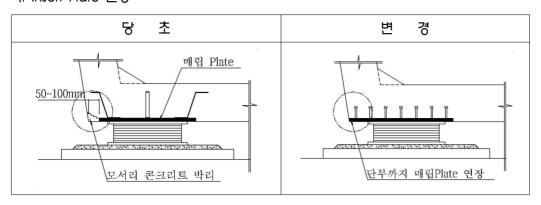

<그림 6.10.7> ILM 강연선의 배치

(5) ILM의 하부 쉬스관 순 피복 두께는 부등 건조수축에 의한 표면 인장용력 등을 고려하여 150 mm 이상, 쉬스관 외경의 1.5배 이상을 적용하는 것이 바람직하다.8)

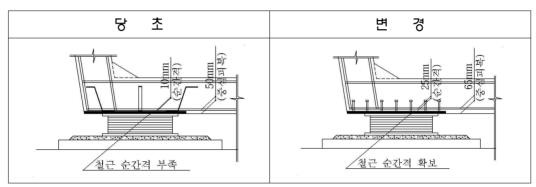
⁶⁾ I.L.M 복부 철근 시공성 개선 방안(건설정 10105-49, 2002.3.29)

⁷⁾ ILM 강선배치 개선(설계이 15212-1927, 1998.12.31)

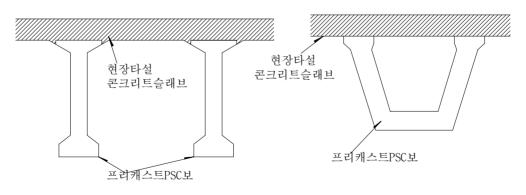

⁸⁾ ILM 교량의 쉬스관 순피복기준 검토(설계이 13201-479, 2000.11.7)


<그림 6.10.8> 쉬스관 순피복 기준

(6) ILM 교량 받침부 Insert Plate 개선⁹⁾


- ① 전반적으로 매립철판 주위에 콘크리트 균열 및 들뜸 발생, 일부 구간에서는 Insert Plate 단 부 콘크리트 파손 및 박락 발생
- ② 결함 원인은 프리스트레스 및 크리프 등으로 Insert Plate와 인근 콘크리트와의 변형차에 의한 유력이 발생하며 압출시 Insert Plate 인접 콘크리트에 마찰에 의한 수평력 발생
- ③ 개선 방안
 - 가. 전단 연결재 변경(Anchor 형식 ightarrow Stud 형식) 및 단부 형상 변경

나. Insert Plate 연장


다. 주철근 피복 두께 변경(철근 피복 15mm 즁가)

6.11 합성거더교

6.11.1 합성거더교의 일반

합성거더교는 프리캐스트의 PSC거더와 현장타설 철근콘크리트 바닥판을 합성한 형식의 것이다.<그림 6.11.1>

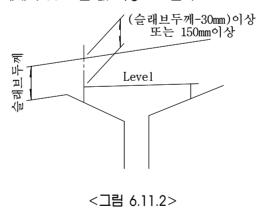
<그림 6.11.1>

6.11.2 합성거더 단면의 구성

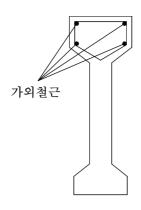
(1) 바닥판의 단면적(As)과 PSC거더의 단면적(Ag)의 비(As/Ag)는 0.6~1.2 정도의 범위가 되도록 하는 것이 좋다.

(2) 거더 형고는 25m 경간의 경우 1.5~2.0m, 30m 경간의 경우 1.75~2.25m, 35m 경간의 경우 2.0~2.5m를 주로 사용하여 35m 이상의 경우도 PSC 거더로 가능하다.

6.11.3 검토 방법

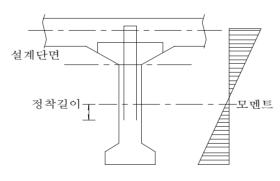

- (1) 거더 및 가로보의 단면력 산정은 '6.9.2 단면력의 계산에 따르기로 한다.
- (2) 하중분배는 2차 고정하중과 활하중으로 하고, 2차 고정하중은 바닥판 타설후의 포장, 연석, 난간 및 첨가물로 한다.
- (3) 합성거더교의 설계에서는 각 시공단계 마다 응력을 산출하고 합성응력을 검토해야 한다.
- (4) PSC 거더는 허용용력뿐만 아니라 강도검토 및 전단검토도 실시하여야 한다.

6.11.4 크리프 및 건조수축차에 의한 유력의 계산

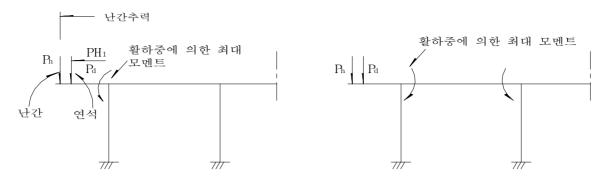

- (1) PSC 거더와 바닥판의 크리프 및 건조수축 차에 의한 영향을 고려해서 용력을 계산하는 것을 원칙으로 한다.
- (2) 연속합성거더교에 대해서는 내부용력에 의해 재차 2차용력이 생기므로 이를 고려하여야 한다.

6.11.5 PSC거더의 구조세목

- (1) PSC 거더의 복부두께는 프리텐션 거더인 경우 130mm 이상, 포스트텐션 거더인 경우 200mm 이상으로 한다. 보의 상부 플랜지의 일부를 바닥판에 매립하는 경우에는 바닥판의 최소두께는 150mm로 한다.
- (2) PSC 거더의 상하 플랜지는 횡단경사에 관계없이 수평으로 해도 좋다. 횡단경사의 변화에 대해 서는 현장타설 콘크리트 바닥판의 헌치 높이로 조정하기로 한다. 단 PSC거더 상단의 최소바닥 판 두께는 바닥판 두께에서 30mm 뺀 값 이상으로 한다.



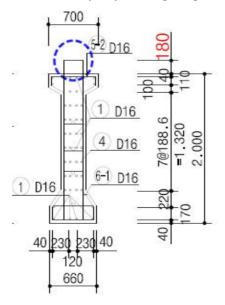
(3) PSC거더의 상부플랜지에 가설시의 황하중에 대한 가외철근을 각각의 우각부에 배치해야 한다. 또 거더에 대해서는 황좌굴에 대한 검토, 가설시의 경사, 풍하중에 대한 안전성 및 수송 중의 충격에 대해서도 충분히 검토하여야 한다.



<그림 6.11.3>

- (4) PSC거더를 I 형단면으로 한 경우 가설시 황하중에 의해 플랜지 단부에 균열이 발생할 위험이 있으므로 황하중에 대해서 <그림 6.11.3>과 같은 가외철근을 배근하여 보강할 필요가 있다. 또 거더의 상부플랜지 폭이 지간에 비해 적고, 복부가 얇으며 거더높이가 높은 경우에는 가설시 황방향좌굴에 대해서도 검토해야 한다.
- (5) PSC거더의 복부는 바닥판에서 분배되는 모멘트에 대해 안전하여야 한다. 거더 복부두께는 통상 200mm 정도이고, 바닥판의 캔틸레버량 및 거더 중심간격도 일반 단순 T형거더 병렬교에 비해 크므로 거더내의 스터럽이 바닥판에서 분배되는 하중에 대해 충분한 지를 검토할 필요가 있다.<그림 6.11.4>
 - ① 지점위에는 강한 가로보가 있으므로 충분히 안전하다.
 - ② 가로보에 의한 구속이 없다고 하면 개단면이 되어 거더에 대한 분배는 거의 무시할 수 있다. 따라서 다음과 같은 가정하에 검토하면 충분하다. 검토하는 위치는 교축방향 지간중앙부근 및 지점부근 가로보부 2곳에 대해서 실시한다.
 - ③ 하중의 재하상태는 <그림 6.11.5>와 같은 2종류를 고려해서 큰 쪽의 휨모멘트를 설계휨모 멘트로 한다.

<그림 6.11.4>

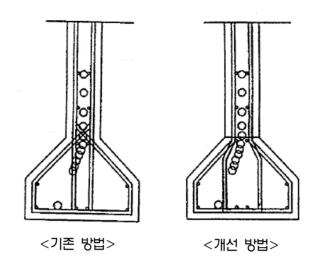

<그림 6.11.5>

- ④ PSC거더에 분배되는 모멘트는 활하중에 의한 최대모멘트(바닥판 설계에 이용하는 모멘트)에 난간, 연석의 하중 및 추력에 의한 모멘트를 가산한다. 또 이 하중을 검토하는 경우는 바닥 판, 포장의 하중은 고려하지 않아도 좋다.
- (6) 설계하중시 인장철근 산정에는 온도차에 의한 응력은 무시한다. 또 프리스트레스 도입직후의 인장철근 산정에는 허용응력을 25% 활중하기로 한다.
- (7) 강연선의 조립시 정확한 위치 확보를 확인 위하여 각 PC Beam의 5개 단면에 대하여 점검용 철근을 추가 배치¹⁰⁾

L=25m: 중앙부 및 좌,우 각각 4m, 8m 지점에 설치

L=30m: 중앙부 및 좌,우 각각 5m, 10m 지점에 설치

(8) 빔과 슬래브의 전단 연결 철근은 빔 상단으로 D16-2ea의 철근을 180mm 돌출시켜 설치해야 하며 수직 전단 철근 배치 간격을 200,300,400mm 등의 등간격으로 배근하는 것이 좋다.¹¹⁾



<그림 6.11.6> 빔 돌출 길이

¹⁰⁾ P.C beam 시공성 개선(설이 16210-170, 1995.5.29)

¹¹⁾ PSC 빔 표준화 적정성 검토(설계처 542, 2005.3.3)

(9) 수직전단 철근 및 하복부 보강철근을 <그림 6.11.7>과 같이 개선하여 텐던과 철근과의 간섭을 피하는 것이 좋다.

<그림 6.11.7> 철근 배근 개선

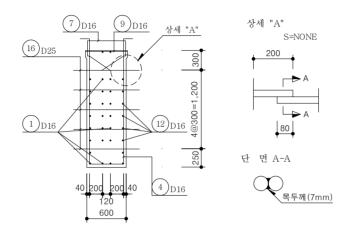
(10) 고속도로 4차로 분리교량(폭원: 12.6m) 일 경우 빔을 2.55m 간격으로 5본 배치하여 적용할수 있다. 이때 방음벽 높이가 높아지거나 곡선반경이 작은 교량, 사각이 큰 교량등에 대해서는 별도 검토해야 한다.12)

구 분	PSC BEAM 6본 배치	PSC BEAM 5본 배치
Beam 간격	2.10m	2.55m
Cantilever	1.05m	1.20m
배치도	신축이음부 중 양 부 1,050 5@2.100=10.500 1,050	- 신축이음부 중 양 부 1.200 4@2.550=10.200 1.200

(11) 중소지간 PSC I형 거더고 교각(약 20m이상) 교량받침 설계시에는 면진받침과 탄성받침의 경제성 및 안전성 등을 비교·검토하여 적용한다.(13)

6.11.6 가로보의 설계 및 시공

- (1) 가로보 설계에 사용하는 활하중은 DB하중으로 하고 충격계수는 주거더에 사용한 값으로 한다.
- (2) 가로보의 간격, 두께, 배치에 대해서는 '6.9.5 가로보의 구조세목'에 따르기로 하된 PC Beam


¹²⁾ 고속도로 4차로 분리 교량의 PSC Beam 배치 간격검토(설심일 13402-260, 2000.12.29)

¹³⁾ 중소지간 PSC I형 거더교량의 면진받침 적용성 검토(설계처-3241, 2006.12.12)

5-6-32 | 제5편 구조물공

25m, 30m, 35m 경간 또는 사각이 30° 이하일 경우 지간 중앙가로보는 최대 정모멘트 위치에만 설치하기로 한다.14)

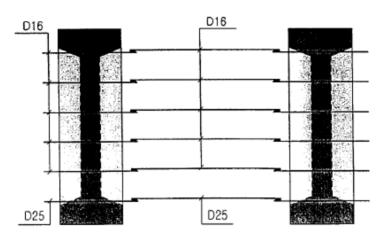
- (3) 가로보의 철근 이음은 필릿 용접(목두께 7㎜)로 적용하는 것으로 한다.15)
- (4) 가로보의 높이는 휨, 비틀림, 전단을 고려하여 검토해야 한다. 기단부 가로보 높이는 0.7m를 적유16)

<그림 6.11.8> 철근 용접 상세

- (5) 중간부 격벽 시공시는 시공성 및 안정성을 고려하여 조립식 강재 격벽(ex: STEEL DIAPHRAGM, H-600×200×11×17)을 사용할 수 있다.(그림 6.11.9) 단 시공성 및 응력 검토 등에 의한 안정성이 기존 공법이 유리하다고 판단될 경우 기존의 콘크리트 격벽 적용이 가능하다.¹⁷⁾
- (6) 중간 가로보의 노출철근은 하단 1열 D25, 상단 1열 D16으로 하고 이음 철근은 노출철근과 철근 직경을 같이한다.

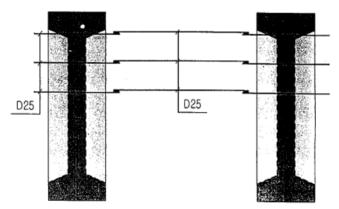
② 조립식 강재 격벽 설치

<그림 6.11.9> 시공순서도


¹⁴⁾ PSC Beam교 중간부 Diaphragm 설치기준(설계구 10201-23, 2004.2.12)

¹⁵⁾ PSC beam 교량의 Cross Beam 철근 이음단가 개선 검토(설이 16210-160, 1995.6.29)

¹⁶⁾ P.C beam 시공성 개선(설이 16210-170, 1995.5.29)


¹⁷⁾ 중간 조립식 강재 격벽 적용방안 검토(설계처 18330, 2007.6.26)

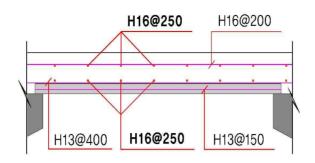
(7) 단부 가로보의 노출철근은 3열 D25으로 하고 이음 철근은 노출철근과 철근 직경을 같이한다. 18) ① 중간 가로보

<그림 6.11.10> 중간 가로보 배근도

② 단부 가로보

<그림 6.11.11> 단부 가로보 배근도

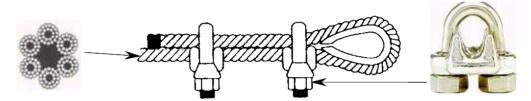
6.11.7 보와 바닥판의 접합


보와 바닥판 접합면의 콘크리트 전단용력검토 및 전단연결재의 철근설계는 그 접합면에 따라서 전단을 전달하여 접촉 요소들이 분리되는 것을 방지하기 위하여 전단 및 비틀림 규정에 따라 상호 연결되어야 한다.

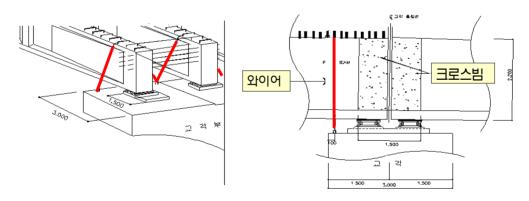
6.11.8 바닥판의 설계

- (1) 바닥판의 설계 및 구조세목은 '도로교 설계기준 제4장 콘크리트교 4.7 바닥판의 각 항에 따른다.
- (2) 현재 프리캐스트 판넬 적용시 사용되고 있는 강도설계법을 경험적설계법으로 전환하여도 일체 거동으로 험강도 및 펀칭강도 등에 대해 충분한 안전을 확보가 가능하다. 19)

¹⁸⁾ PSC Beam 가로보 철근변경 검토(건이이 13105-292, 1999.8.10)


¹⁹⁾ 교량 바닥판 프리캐스트 판넬공법의 경험적 설계법 적용방안 검토(설계처-2963, 2006.11.16)

<그림 6.11.12> 경험적 설계에 의한 철근 배근


6.11.9 전도방지공의 설계20)

(1) 전도 방지 와이어는 10㎜ 와이어로프를 사용하며 3/8" 클립을 규격에 맞춰 2개소 체결하는 것으로 한다.

<그림 6.11.13> 와이어로프 및 클립

(2) 전도방지 와이어를 단부 크로스빔과 간섭이 안되게 설치하여 전도방지 안정성을 확보해야 한다.

<그림 6.11.14> 전도 방지 장치의 설치

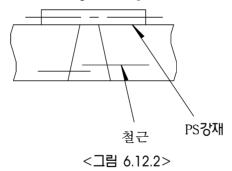
6.12 연속합성거더교

6.12.1 연속합성거더교 일반

(1) 연속합성거더교는 프리캐스트의 PSC단순보를 교각상의 가설받침 위에 가설하고 가로보를 시 공한 후 중간지점상에서 단순보를 연결하여 연속거더로 변환한 후 바닥판을 시공해서 합성거 더로 하는 것을 말한다.


- (2) 연속합성거더의 일반적인 시공순서는 다음과 같다.
 - ① 프리캐스트 PSC단순보 가설받침위 가설

② 가로보의 시공


③ 바닥판의 시공

<그림 6.12.1> 연속합성거더의 일반적인 시공순서

6.12.2 거더 연결부의 구조

- (1) 중간 지점상에서의 거더연결방법은 프리캐스트 PSC거더 상부 플랜지 또는 상부 플랜지상의 바닥판 내에 배치된 PS강재에 의한 프리스트레스 및 프리캐스트 PSC거더의 철근에 의하는 것을 원칙으로 한다.
- (2) 이 방법에 따른 경우 지점부 하연에 인장유력이 생기는 경우도 있으므로 이때는 철근에 의해 충분히 보강한다. 또 연결부의 PSC거더 단부에 1/40 정도의 테이퍼를 붙임과 동시에 거더와 연결부의 타설이음에 대해 전단을 충분히 보강해야 한다.

6.12.3 바닥판의 설계

- (1) 연속합성거더교에 1차바닥판과 2차바닥판의 이음은 계산상 필요한 교축방향 철근량의 2배를 배치한다.
- (2) 타설이욤의 균열에 대비하여 가외철근으로 삽입하는 것이며, 정착길이는 타설이욤 보다 적어 도 1/2 이상 길게 하는 것이 좋다.

6.12.4 응력 검토

(1) 응력의 검토는 시공순서에 따른 하중상태, 구조형식에 의해 단면의 각부에 대해서 검토하여야 하고 PSC거더와 바닥판의 건조수축차, 크리프계수차, 온도차 및 이들에 의한 2차응력에 대해 서도 충분히 검토해야 한다.

5-6-36 | 제5편 구조물공

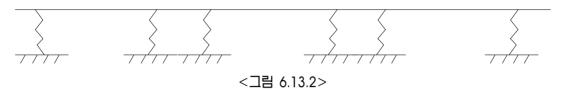
- (2) 바닥판에 배치하는 케이블은 바닥판에 프리스트레스가 일정하게 분포하도록 배치하는 것이 좋다.
- (3) 정착부도 가능한 한 분산시켜서 응력집중과 급변을 피하도록 배치하며 특히 1차 바닥판의 단부에 집중시켜 정착하는 것을 피하고 1차 바닥판 내에 분산하여 정착하는 것이 좋다.

- ④. ⑤ 는 span 중심으로 1차슬래브를 치지 않는 부분
- ⑩ 은 지점상에서 1차슬래브를 치는 부분

6.13 연결거더교

6.13.1 연결거더교 일반

- (1) PSC 연결거더교란 프리캐스트 PSC 단순보를 가설 후 교각 위의 보 접합 구간을 현장타설 콘 크리트로 연결하는 구조를 말한다.
- (2) PSC 연결거더교는 연결부를 1~2개의 받침으로 지지하는 형식으로 한다. 또 고무받침 사용시에 는 고무 물성에 의한 오차, 다츙고무의 피로특성의 문제가 있으므로 충분히 검토하여야 한다.
 - ① 지간분할은 등경간으로 간주될 정도의 것일것.
- (3) PSC 연결거더교의 일반적인 시공순서는 <그림 6.13.1>과 같다.
 - ① 프리캐스트 PSC 단순보를 받침 위에 기설

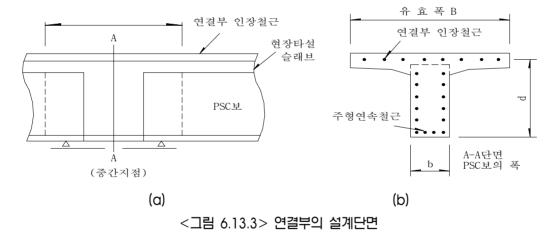

<그림 6.13.1> 시공순서

6.13.2 설계단면의 단면력

(1) 연결부 설계단면에 작용하는 단면력은 거더 연결후에 작용하는 하중에 의한 단면력을 사용하기로 하고, 거더 연결후에 작용하는 하중은 교면고정하중, 활하중 및 콘크리트의 크리프, 건조

수축에 의하여 생기는 2차용력이다.

- (2) 고정하중 작용시 원칙적으로 정의 휨모멘트가 작용하지 않는 상태로 하는 것이 바람직하다.
- (3) 콘크리트 크리프 및 건조수축에 의해 거더 연결후에 생기는 2차용력은 단면에 불리하게 작용하는 경우에 대해서만 고려한다. 거더 연결후의 단면력 산정은 <그림 6.13.2>과 같이 탄성받침을 갖는 연속보로서 구하는 것을 원칙으로 한다.



(4) 거더와 가로보의 결합은 주로 횡방향체결에 의해 이루어지므로 지진에 의한 수평력을 받을 경우 접합면이 어긋나지 않도록 검토한다.

6.13.3 연결부의 단면산정상의 가정

(1) 연결부에 작용하는 부의 휨모멘트에 대한 설계단면은 <그림 6.13.3>(a)와 같이 연결부 단면 A-A로 하고 단면형상은 <그림 6.13.3>(b)와 같이 한다. T형거더 및 박스거더의 단면 유효폭은 도로교 설계기준 제4장 콘크리트교 4.2.2.6 압축플랜지의 유효폭에 따른다.

단면 A-A는 철근콘크리트 단면으로 계산한다.

- (2) 연결부 인장철근은 바닥판의 유효폭내에 균등하게 배치하는 것으로 하지만 바닥판과 보의 접합면 부근에는 약간 넉넉하게 배치하는 것이 좋다. 유효폭 외의 바닥판에도 같은 양의 철근을 배치한다.
- (3) 연결부에 작용하는 정의 휨모멘트에 대한 설계단면은 부의 경우와 같게 하고 프리스트레스, 가로보의 영향을 무시하고 철근콘크리트 단면으로 계산한다.

6.13.4 연결철근의 겹이음길이 및 매입철근의 부착길이

- (1) 연결부 주철근의 겹이욤길이는 철근직경의 25배 이상으로 한다.
- (2) T영보인 경우 매입철근은 압축부에 정착하여야 한다.

5-6-38 | 제5편 구조물공

6.13.5 받 침

- (1) 연결거더교에 사용하는 받침은 통상의 받침기능 외에 소정의 압축스프링정수를 만족하는 받침 (고무받침)을 사용하는 것으로 한다.
- (2) 설계에 이용하는 반력은 연결전 하중에 대해서는 단순보로서 산출한 반력으로 하고 연결후 하 중에 대해서는 탄성받침을 갖는 연속보로서 산출한 반력을 가산하여 구하는 것으로 한다.