
제 7 장 철근콘크리트교

7.1 설계순서

RC 교량의 설계는 <그림 7.2.1>에 있는 흐름도의 항목에 대해 계산하여야 한다.

<그림 7.1.1> RC 교량의 설계 흐름도

7.2 설계 계산에 관한 일반사항

7.2.1 재료의 허용응력

[표 7.2.1] RC 부재의 콘크리트 허용응력(Ma)

허용용력의 구분	기 호	공 식
(1) 허용 휨응력 :		0.4.4
① 허용 휨압축용력	f_{ca}	0.4 f _{ck}
② 허용 휨인장응력	f_{ta}	$0.13\sqrt{f_{ck}}$
(무근의 확대기초와 벽)		
(2) 허용 압축용력	f_{ca}	$0.25 f_{ck}$
(무근의 확대기초와 벽)	¹ ca	0.20 1 ck
(3) 허용 전단용력 :		
① 보 및 1방향 전단		
(1방향 슬래브 및 확대기초)		
(가) 콘크리트	v ca	$0.08\sqrt{f_{ck}}$
(나) 전단보강이 있는 부재의 최대허용전단응력	v a	$0.32\sqrt{f_{ck}}$
② 2방향 전단		V CK
(2방향 슬래브 및 확대기초)		
(가) 콘크리트	V ca	/ 2 \
(1) 715147101011 710		$0.08 \left(1 + \frac{2}{\beta_c}\right) \sqrt{f_{ck}}$
(나) 전단보강이 있는 경우	<i>v</i> a	$\leq 0.16 \sqrt{f_{ck}}$
③ 경량골재콘크리트	U ca	♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥
		4.5.5 참고
		①, ②의 70%
(4) 허용 지압용력	f_{ba}	$0.25 f_{ck} \sqrt{\frac{A_c}{A_b}} \le 0.5 f_{ck}$

여기서,

vca: 콘크리트가 부담하는 허용 전단응력

va : 전단보강이 있는 부재의 최대 허용 전단응력

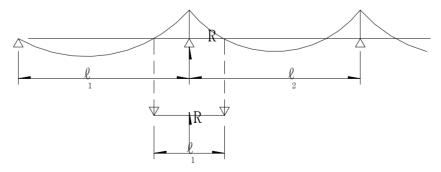
 β_c : 집중하중 또는 반력의 작용면에서 짧은 변에 대한 긴 변의 비

Ac : 지지한 콘크리트의 전면적(mm)

A_b : 지압을 받는 재하면적(mf)

철근의 종류 응력, 부재의 종류			SD30	SD35	SD40
인 장 용 력	하중조합에 충돌하중이나 지진의 영향을 포함시키지 않 을 때	일반적인 부재	150	175	180
		바닥판 및 지간 10m 이하의 슬래브교	150	160	160
		수중 혹은 지하수위 이하에 설치하는 부재	150	160	160
	하중조합에 충돌하중이나 지진의 영향을 포함시킬 때		150	175	180
압 축 용 력			150	175	180

[표 7.2.2] RC부재의 철근 허용응력(Ma)

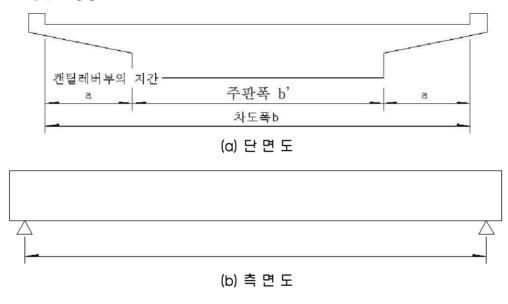

7.3 슬래브교

7.3.1 일반사항

- (1) 슬래브교의 해석은 받침부의 조건 및 사각 등을 고려하여 판이론에 따라 수행하는 것을 원칙으로 한다.
- (2) 그러나 연속 슬래브교, 라멘슬래브교 등과 같이 지지조건이 복잡한 경우 혹은 곡선교와 사교 와 같은 경우에는 격자이론과 유한요소법 등에 의하여 해석하여도 좋다.
- (3) 간단한 유한대판법(보이론해석방법 적용)으로는 구조해석을 하지 말아야 한다.
- (4) 원형단면을 갖는 속빈슬래브교는 듕방성판으로 생각하여 단면력을 계산해도 좋다.
- (5) 연속 슬래브 구조에서는 지점부에 헌치를 두거나 이에 상용하는 철근보강이 필요하며 일반적으로 헌치를 두는 것을 원칙으로 한다.

7.3.2 연속슬래브 지점의 구조해석

(1) 연속슬래브지점의 설계를 하는 경우에는 연속슬래브의 지점을 포함하여 모멘트가 0인 점 사이의 거리를 경간으로 하고, 받침 반력을 집중하중으로 하는 가상 단순받침슬래브로 구조해석을 해도 좋다.


(2) 받침간격이 크게 되는 경우에는 교축직각방향 휨모멘트를 줄이기 위해 받침수를 늘여 받침간 격을 단축하는 것으로 한다.

5-7-4 | 제5편 구조물공

(3) 받침수가 3개 이상인 경우 가로보는 연속보로 해석하는 것을 원칙으로 한다. 단, 각 부분이 안전한 근사식을 사용해도 좋다.

7.3.3 캔틸레버부를 갖는 슬래브교

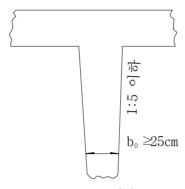
- (1) 보도, 차도 구별이 없고 차도쪽 캔틸레버의 내민길이가 0.25m 이하인 슬래브교는 캔틸레버가 없는 슬래브교 처럼 단면력을 산정하여도 좋다.
- (2) 캔틸레버 부분이 있는 슬래브교<그림 7.3.1>의 구조해석은 캔틸레버 부분에 작용하는 하중 및 강성의 영향을 고려하여 설계하여야 한다.

<그림 7.3.1> 캔틸레버부를 갖는 슬래브교

7.3.4 구조세목

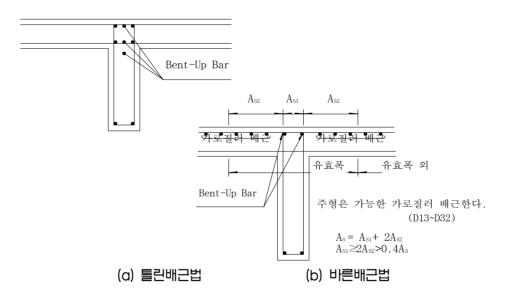
- (1) 상부철근, 하부철근 모두 횡방향으로 배치되는 철근은 원칙적으로 1단으로 배치한다.
- (2) (1)의 경우 축방향 철근의 외측으로 배치하는 것이 좋다.
- (3) 휭방향 철근의 직경은 스터럽의 직경과 현저하게 상이해서는 안된다.
- (4) 스터럽은 U형 혹은 X형을 사용해도 좋다.
- (5) 원통형 거푸집 상하의 콘크리트 두께는 각각 150㎜, 100㎜로 한다.
- (6) 받침설계에 사용하는 활하중 반력은 주하중을 폭원방향으로 전폭 재하하여 구한 값을 받침 갯수로 나눈 값으로 한다.
- (7) 고정하중에 있어서도 같은 방법으로 전반력을 받침개수로 나눈 값을 사용한다.

7.4 T형교


7.4.1 주형의 설계휨모멘트

(1) 주형 및 가로보의 단면력 계산은 격자구조이론에 의하는 것을 원칙으로 한다.

- (2) 사각 20° 이하인 교량의 경우에 격자구조이론에 의하여 단면력을 계산할 때에는 비틀림 강성을 무시하여도 좋다.
- (3) 사각이 20° 초과인 사교의 경우에는 비틀림의 영향을 고려하여야 한다...


7.4.2 주 형

(1) 복부의 두께는 현장타설시 250㎜ 이상, 프리캐스트보인 경우 150㎜ 이상으로 한다.

<그림 7.4.1> 주형의 복부

- (2) 부모멘트를 받는 부분의 인장철근은 유효폭 전체에 분산시킨한다.
- (3) 유효폭 이외에는 유효폭내의 단위폭당 철근량의 1/3 이상의 철근을 배근하는 것이 바람직하다.
- (4) 전단력의 1/2 이상은 스터럽으로 부담하는 것을 원칙으로 한다.

<그림 7.4.2> 중간지점의 인장철근 배치 예

7.4.3 가로보

- (1) 중간가로보는 각 지간에 1개 이상 또 15m 이하의 간격으로 설치하여야 한다.
- (2) 또 주형의 지점상에는 반드시 가로보를 설치하여야 한다.
- (3) 사교의 경우 가로보의 설치방법

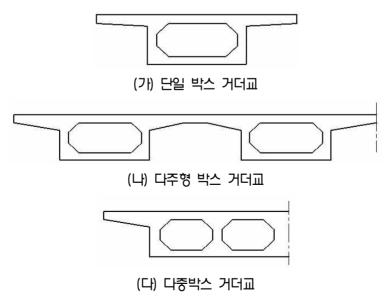
5-7-6 | 제5편 구조물공

- ① $0^{\circ} \leq \phi \leq 20^{\circ}$ (ϕ 사각): 가로보는 교대에 대해 평행하게 설치한다.
- ② 20° < ∅: 가로보는 주형에 대해 직각으로 설치한다.

7.4.4 복부철근의 계산에 사용되는 비틀림모멘트 및 전단력

사각을 고려한 격자구조이론을 써서 전단력을 산정하는 경우 복부철근의 계산은 다음과 같이 구하는 것으로 한다.

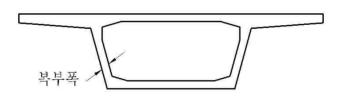
- (1) 복부철근의 계산에 쓰이는 비틀림모멘트 및 전단력은 다음 2가지 경우의 활하중 재하에 의하여 구하는 것으로 한다.
 - ① 휨에 의한 최대전단력을 일으키는 재하형태에서의 비틀림전단력
 - ② 최대 비틀림모멘트를 일으키는 재하형태에서의 휨에 의한 전단력
 - ①②중 큰 쪽으로 복부철근을 산정한다.

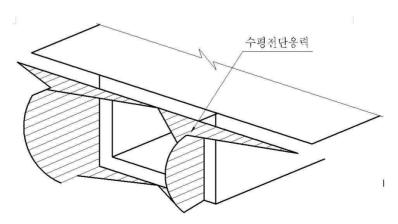

7.4.5 구조세목

- (1) 주형의 복부철근
 - 주형의 전단보강은 스터럽 및 절곡철근으로 한다. 단, 이 경우 적어도 전단력의 1/2은 스터럽으로 받게 하여야 한다.
- (2) 전단철근으로 사용된 스터럽과 기타 철근 또는 철선은 압축연단에서 거리 d까지 연장되어야 한다.

7.5 박스거더교

7.5.1 일반 사항


이 절은 단면이 상자모양으로 구성된 교량의 설계에 적용된다.


<그림 7.5.1> 박스거더교의 기본 단면 형상

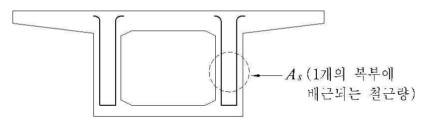
7.5.2 설계 일반

- (1) 주거더의 받침점상에는 가로보 및 격벽을 두는 것을 원칙으로 한다.
- (2) 경간이 24m 이상인 다주형 박스거더에는 중간 가로보 및 중간 격벽을 설치하는 것을 원칙으로 한다.
- (3) 경간내에 가로보를 둘 경우에는 모멘트가 가장 큰 부위에 배치하는 것이 효과가 크다.
- (4) 단일 및 다중 박스거더로서, 직선교이거나 내측 곡률반경이 240m 이상인 곡선교일 경우에는 중간격벽을 설치할 필요가 없다.
- (5) 단일 및 다중 박스거더의 곡률반경이 240m 미만일 경우에는 중간격벽이 필요할 수 있으며 중간격벽 간격과 강도는 설계시에 신중히 검토해야 한다.
- (6) (5)의 경우에 중간 격벽의 간격은 12m 이하로 하는 것이 바람직하다.
- (7) 실험이나 정밀구조해석에 의해 안전성이 증명되면 격벽이나 가로보를 생략할 수 있다.
- (8) 전단용력의 계산에 사용하는 복부두께는 복부 축선의 직각방향의 두께로 하는 것을 원칙으로 한다.
- (9) (9)의 예를 들면 경사진 복부의 경우에는 <그림 7.5.2>에 보인 것과 같이 전단류에 직각방향의 폭을 사용하면 된다.
- (10) 플랜지 폭이 복부 또는 플랜지의 두께에 비하여 상대적으로 클 때에는 플랜지에 생기는 전단력에 대하여 검토하는 것이 좋다.
- (11) 박스거더 내부 바닥판과 복부 사이에는 헌치를 적절히 설치해야 한다.
- (12) 복부와 하부플랜지 사이에는 구조적인 안전성이 입중된 경우 헌치를 설치하지 않아도 좋다.

<그림 7.5.2> 전단응력의 계산에 쓰이는 복부의 폭

<그림 7.5.3> 플랜지에 생기는 수평전단용력의 분포

7.5.3 구조 애석

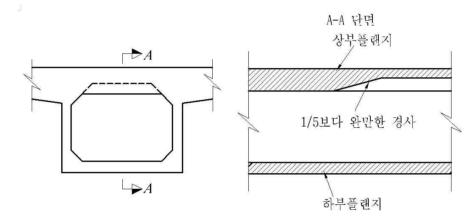

- (1) 단일 박스거더교 및 다중 박스거더교의 단면력은 보이론에 따라 계산한다.
- (2) 그러나 경간에 대한 전체폭의 비(전체폭/경간)가 0.5를 넘는 비교적 폭이 넓은 다중박스거더교 는 격자이론에 따라 단면력을 계산하는 것이 좋다.
- (3) 사각이 있는 박스거더교 및 다주형 박스거더교의 단면력은 격자이론에 따라 계산하는 것을 원칙으로 한다.
- (4) 중방향 구조해석에 사용하는 바닥판 유효폭은 일반적인 바닥판 경간을 갖는 경우에는 바닥판 전폭이 압축에 유효한 것으로 볼 수 있다.
- (5) 일반적인 바닥판 경간 비율을 벗어나는 경우에는 전단지연을 고려하여 바닥판 응력을 계산해 야 한다.

7.5.4 횡방향 설계

- (1) 바닥판 설계를 포함한 횡방향 설계를 위해서는 판이론에 근거한 정밀구조해석을 하는 것이 좋다.
- (2) 정밀구조해석이 어려운 경우에는 '도로교 설계기준 4.15.6.2'의 (4)항에 따라 해석해도 좋다.
- (3) 경사진 복부 및 보강 리브가 있는 박스거더교의 하부플랜지 및 복부의 단면력은 복부의 경사 와 보강 리브의 영향을 고려하여 구하는 것을 원칙으로 한다.
- (4) 복부의 휨모멘트에 대하여 배치된 철근량의 1/2은 교축방향의 설계를 할 때 사인장철근으로 간주하여도 된다.

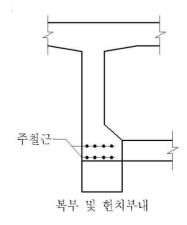
$$A_s = A_{s1} + 0.5A_{s2} + A_t ag{4.7.5.1}$$

(5) 복부 내측 및 외측에 대하여는 복부에 생기는 정·부모멘트에 대하여 각각 필요한 철근량 이상 의 철근을 배치하여야 한다.


<그림 7.5.4> 복부에 배치되는 철근량

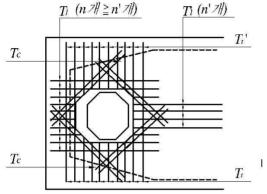
7.5.5 받침점가로보 및 격벽의 설계

- (1) 받침점가로보 및 격벽의 단면력은 받침점과 부재의 결합조건에 따라 해석모델을 설정하고 보이론에 의하여 계산하는 것이 좋다.
- (2) 가로보 및 격벽의 단면력을 계산할 때, 플랜지의 유효폭은 '도로교 설계기준 4.15.6.2'에 따라 구하면 된다.
- (3) 다만, 받침점가로보 및 격벽에 개구부가 있을 때에는 그 영향을 고려하여 구조모델을 설정하고 단면력을 계산하여야 한다.


7.5.6 구조상세

- (1) 철근 콘크리트 박스거더 바닥판의 최소두께는 복부 또는 복부헌치 순경간의 1/16로 한다. 그러나 220mm 이상이어야 한다.
- (2) 철근 콘크리트 박스거더 하부플랜지의 최소두께는 복부 또는 복부헌치 순경간의 1/16로 한다. 그러나 140mm 이상이어야 한다.
- (3) 플랜지의 두께를 주거더방향으로 변화시킬 경우에는 1/5보다 완만한 경사로 하는 것이 좋다.
- (4) 1/5 이상의 급한 경사로 설계할 경우에는 1/5 이하의 완만한 경사내의 부분만 유효단면적으로 고려한다.
- (5) 복부두께를 주거더방향으로 변화시킬 때는 복부두께 차이의 12배 이상의 길이를 변화구간으로 확보해야 한다.

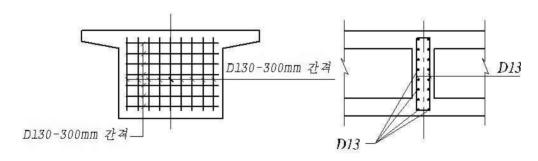
<그림 7.5.5> 플랜지 두께의 변화


- (6) 복부의 종방향 철근은 건조수축 및 온도철근(0.2%) 이상으로 전단면에 골고루 배치해야 한다.
- (7) 하부슬래브의 종방향 및 횡방향 철근의 배근은 '도로교 설계기준 4.6.4.1'에 따라야 한다.
- (8) 철근콘크리트 박스거더교의 주거더에 배치하는 주철근은 복부 및 헌치부 내에서 2단 이하로 배치하는 것이 좋다.
- (9) 부득이 플랜지 내에 배치할 경우에는 복부의 측면에서 주거더 경간의 1/10의 범위내에 배치하고, 철근중심간격의 최대값은 250mm로 하는 것이 좋다.

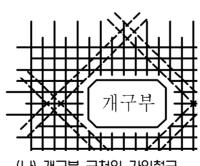
<그림 7.5.6> 주철근의 배치

5-7-10 | 제5편 구조물공

- (10) 개구부를 둘 때에는 될 수 있으면 응력의 크기가 작은 곳에 둔다.
- (11) 개구부보강은 개구부에 의하여 절단된 철근량 이상의 철근을 보강철근으로 배치하는 것으로 한다. <그림 7.5.7>
- (12) 별도의 설계계산을 하지 않은 경우에 경간에 두는 격벽에는 <그림 7.5.8>(가)에 보인 철근 을 배치하는 것으로 한다.
- (13) 단, 개구부를 둘 때에는 <그림 7.5.8>(나)를 따르는 것으로 한다.



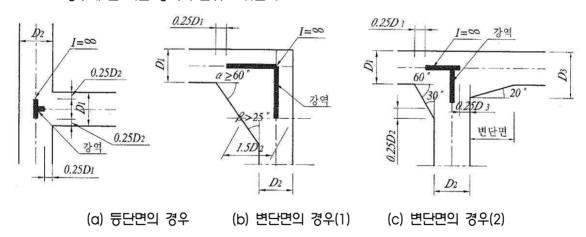
T1: 절단된 축방향철근(T1')의 보강철근


Tt: 절단된 직각방향철근(Tt')의 보강철근

Tc:T1', Tt'를 연결하는 철근

<그림 7.5.7> 하부플랜지 개구부 구조의 한 예

(가) 일반부

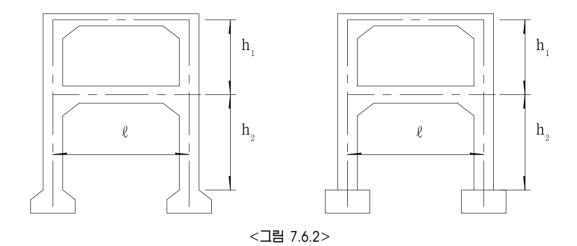

(나) 개구부 근처의 가외철근

<그림 7.5.8> 격벽의 배근

7.6 라멘교

7.6.1 구조해석

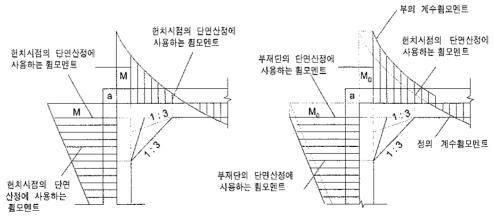
- (1) 보와 기둥, 슬래브, 벽 등이 일체로 된 구조는 라멘으로 해석하여야 한다.
- (2) 라멘의 경우 부정정력은 탄성이론으로 구하는 것을 원칙으로 한다.
- (3) 라멘은 일반적으로 부재의 강비 및 절점의 고정도를 고려해서 구조해석을 하여야 한다.
- (4) 보 또는 기둥의 크기가 특히 큰 경우에는 우각부의 강역을 고려한다.
- (5) 부재의 휨변형과 전단변형을 고려해서 라멘해석을 하여야 한다.
- (6) 일반적으로 강역의 범위는 다음과 같이 생각해도 좋다.
 - ① 부재 단부가 다른 부재와 강절로 접합될 때는 그 연단부에서 부재두께의 1/4 틀어간 점까지로 한다.
 - ② 부재가 그 축선에 대해서 25° 이상 경사진 헌치를 갖는 경우에는 부재두께가 3/2배가 되는 점까지로 본다. 다만 헌치의 경사가 60° 이상의 경우에는 헌치 시점부터 부재두께의 1/4 안 쪽점에서부터 절점까지로 한다.
 - ③ 좌우 헌치의 크기가 다른 경우 등의 이유로 위에서 정한 점이 2점 이상 동시에 존재하는 경우에 큰 쪽을 강역의 범위로 취한다.


<그림 7.6.1> 강역의 범위

- (7) 라멘구조물은 기초의 부듕침하, 회전 듕에 의해 구조물에 변형이 생기지 않도록 기초를 설계한다.
- (8) 라멘구조물은 절점의 고정도를 충분히 고려하여야 한다.

7.6.2 축 선

- (1) 라멘의 축선은 부재단면의 도심축선으로 한다.
- (2) 다만 헌치가 있는 라멘교의 헌치부분에서의 축선을 취하는 방법에 대해서는 헌치의 영향이 작다고 생각되므로 헌치의 영향을 무시해도 좋다.
- (3) 축선의 길이는 보에서는 기둥의 축선간의 거리 ℓ 로 한다.


(4) 기둥에서는 보의 축선간의 거리(h₁) 또는 보의 축선에서 고정받침의 경우 기초(footing) 상면 까지(h₂), 힌지받침의 경우 힌지의 중심까지(h₂)로 한다.

(5) 수평부재와 연직부재의 길이의 비가 4정도 이상이거나 단면의 변화가 매우 심한 경우 거더의 축선변화의 영향을 고려하여 단면력을 계산하는 것이 좋다.

7.6.3 단면력의 산정

- (1) 부재접합부 및 헌치 단면의 단면계산 헌치의 영향을 고려할 경우 받침부 면에서 부재의 단면을 산정하기 위한 휨모멘트의 값은, 보 에 있어서 기둥 전면의 휨모멘트, 기둥의 경우 보의 상하면 위치의 휨모멘트를 사용할 수 있 다. (<그림 7.6.3>(a) 참조)
- (2) 헌치의 영향을 무시 하고 구조해석을 할 경우는 절점 모멘트를 기둥 내측 또는 보의 단부까지 이동시켜 구한 값을 사용할 수 있다. (<그림 7.6.3>(b) 참조)

- (a) 헌치 및 단면변화의 영향을 고려해서 구조해석을 하는 경우
- (b) 헌치 및 단면변화의 영향을 무시하고 구조해석을 하는 경우

<그림 7.6.3> 라멘부재 절점부의 설계휨모멘트

- (3) 수평부재가 받는 축방향력
 - 연직하중을 받는 경우 수평부재의 용력계산에 수평부재에 생기는 축방향력은 무시하고 휨모멘 트만이 작용하는 것으로 해서 계산해도 좋다.
- (4) 토압이 작용하는 라멘교 벽식교각의 라멘교 등에서는 교각에 토압이 작용할 때 이를 고려하여 야 한다.

7.6.4 우각부의 배근

라멘 우각부의 배근은 '도로교 설계기준 4.12.5'에 따른다.

7.7 연속거더교

7.7.1 적용

- (1) 이 장은 받침부에 의해 지지되는 2경간 이상 연속된 교량의 설계에 적용한다.
- (2) 이 장은 연속거더교의 고유의 사항에 대해 규정한 것으로 슬래브교, T형거더교, 박스거더교 등의 단면형상 고유의 사항에 대해서는 각각 해당되는 장에 따른다.

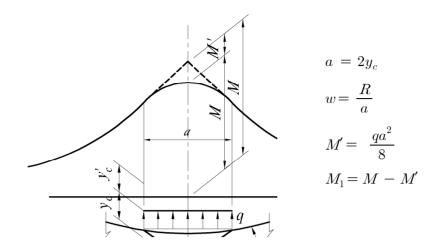
7.7.2 구조해석

- (1) 여러 개의 고정받침부를 갖는 연속거더교는 교각을 포함한 구조모델에 의해 해석을 하여야 한다.
- (2) 1개의 고정받침부를 갖는 연속거더교는 격자해석을 원칙으로 한다.
- (3) 교축직각방향의 지진의 영향 및 풍하중에 대한 구조해석은 원칙적으로 교각의 휨강성을 고려하여 행한다.
- (4) 연속형교의 중간받침점상의 설계휨모멘트는 [식 7.8.1]에 의해 계산할 수 있다.

$$M_1 = M - \frac{wa^2}{8}$$
 [4 7.8.1]

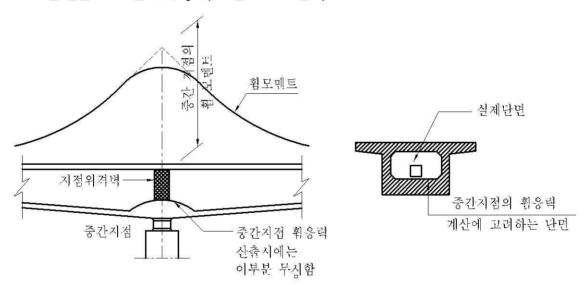
다만, $M_1 \geq 0.9M$

여기서, M_1 : 중간받침점상의 설계휨모멘트 $(kN \cdot m)$


M : 중간받침점상의 휨모멘트 $(kN \cdot m)$

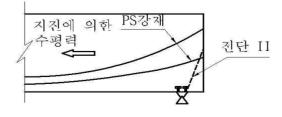
w = R/a(kN/m)

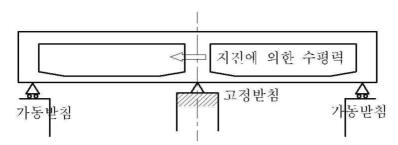
R : 중간받침점의 반력(kN)


a : 단면의 도심위치에서의 반력의 교축방향 가상 분포폭(m)

(5) 거더의 아래 연단 측에는 보이론으로 계산한 경우보다 큰 압축용력이 발생할 수 있으므로 이부분에서는 '도로교설계기준 4.11.5'의 규정에 따라 가외철근을 배치할 필요가 있다.

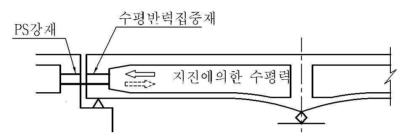
<그림 7.7.1> 중간받침점상의 설계휨모멘트


(6) 받침점상에 가로보나 격벽이 있는 경우, 휨용력 산출에 이용하는 주거더의 단면은 이를 무시한 단면으로 보는 것이 좋다(<그림 7.7.2> 참조).


<그림 7.7.2> 중간받침점의 휨모멘트에 대한 응력계산에 쓰이는 단면

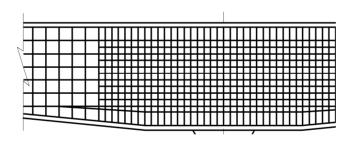
7.7.3 고정받침부

- (1) 연속형교의 고정받침부에서는 지진의 영향에 의한 수평반력이 거더에 작용하게 된다.
- (2) 이로 인한 응력에 대하여 철근이나 PS강재 등으로 보강하여야 한다.



(가) 단받침점을 고정받침부로 하는 경우

(나) 중간교각에 고정받침부를 설치하는 경우


<그림 7.7.3> 고정받침부에서의 수평반력

<그림 7.7.4> 단받침점의 격벽으로부터 직접 교대에 수평반력을 전달하는 경우

7.7.4 중간받침점부

(1) 연속형교의 중간받침점 부근에서는 복부 및 거더 아래 연단측에 보이론으로 해석한 경우보다 더 큰 압축유력이 발생할 수 있으므로 이에 대비하여 가외철근을 배치하여야 한다.

<그림 7.7.5> 중간받침점 부근에서의 복부 가외철근의 배치 예

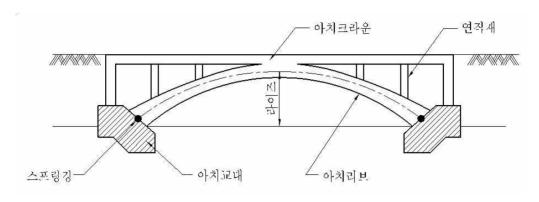
7.8 아치교

7.8.1 적용범위

- (1) 이 절은 철근콘크리트 아치교의 설계에 적용한다.
- (2) 이 절은 주구조로서의 철근콘크리트 아치리브를 설계할 때의 일반적인 사항에 대하여 규정한다.
- (3) 아치교를 구조역학적으로 분류하면 고정아치, 1한지아치, 2한지아치, 3한지아치 등으로 구분된다.
- (4) 아치교를 구조형식별로 분류하면 개복식 아치 및 폐복식 아치로 구분된다.
- (5) 페복식 아치는 경간 30 m 이내의 비교적 짧은 경간의 교량에 적용한다.
- (6) 개복식 아치는 비교적 장대경간의 교량에 적용한다.

5-7-16 | 제5편 구조물공

(7) 아치교의 각 부의 명칭은 다음과 같다.


① 아치리브 : 아치부재를 말한다.

② 아치크라운:아치구조의 정점을 말한다.

③ 스프링깅 : 아지부재의 양단부를 말한다.

④ 라이즈 : 아치축선의 양 기점을 연결하는 선에서 정점까지의 높이를 말한다.

⑤ 경간라이즈비 : 경간과 라이즈의 비를 말한다.

<그림 7.8.1> 아치교 각부의 명칭

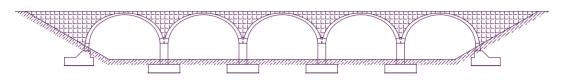
7.8.2 설계일반

- (1) 아치축선은 하중에 의한 압력선과 일치시키는 것이 바람직하다.
- (2) 아치리브의 단면형상은 경간라이즈비, 아치축선, 콘크리트의 강도, 시공방법 등을 고려하여 선정하여야 한다.
- (3) 아치리브의 기초는 아치리브단에 생기는 반력에 충분히 저항할 수 있는 견고한 것으로 하여야 한다.
- (4) 아치리브의 기초는 아주 단단한 기초지반상에 축조하여야 한다.
- (5) 기초지반이 연약한 경우에는 개량하는 등의 대책을 강구하여야 한다.

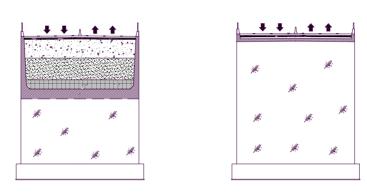
7.8.3 구조해석

(1) 구조해석및 구조상세는 '도로교설계기준 4.13.3및 4.13.4를 따른다.

7.8.4 좌굴에 대한 검사


아치교를 설계함에 있어서는 아치리브가 포함하는 면내에서의 좌굴이나 면외에서의 좌굴에 대하여 안전한가를 확인하여야 한다.

- (1) 아치리브는 수평반력에 의해 큰 축방향압축력을 받는 부재이므로 이를 설계할 때는 응력이나 단면내력의 검사 외에 면내 및 면외 방향의 좌굴에 대한 안전성을 확인해야 한다.
- (2) 아치의 면외좌굴에 대해서는 아치리브를 직선 기둥으로 보고, 이 기둥이 아치리브 단부에 발생하는 수평반력과 같은 축방향력을 받는다고 보아 검토해도 좋다.
- (3) 이 경우 기둥의 길이는 원칙적으로 아치 경간과 같다고 본다.

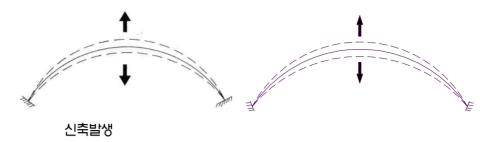

7.9 무바닥판 콘크리트 아치교1)

7.9.1 개요

(1) 개요도

<그림 7.9.1> 측면도

<그림 7.9.2> 정면도

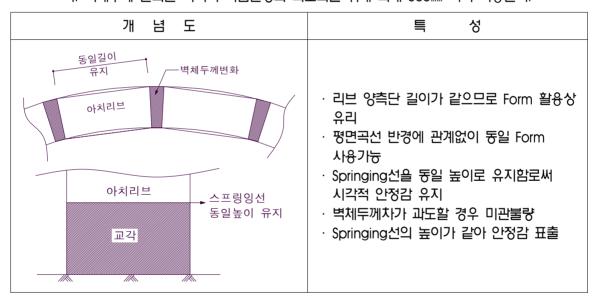

(2) 개 요

- ① 아치리브의 양측단에 강결된 측벽을 설치하고 그 내부에 채움재를 충진하여
- ② 아치리브교량의 주요 유지보수대상인 신축이음장치, 교량받침 및 바닥판을 배제한 교량형식

7.9.2 적용범위

- (1) 지간장 검토
 - ① 최대 지간장 36.5m 정도이나 일반적으로 20~30m의 지간을 적용한다.
- (2) 형하고 검토
 - ① 시공성 및 경제성 측면을 고려할 때 30m 이내로 제한한다.
- (3) 교량연장 검토
 - ① 무바닥판 콘크리트교는 이론상 온도신축이나 건조신축에 의한 거동이 리브가 상하 방향으로 움직이는 아코디언 효과로 흡수되기 때문에 이론상 적용 연장의 한계는 없다.
 - ② 그러나 교량연장이 긴 경우에는 구조계가 고차부정정화함에 따라 발생하는 구속용력에 의한 균열제어 대책에 대한 검토가 필요하다.

¹⁾ 무바닥 콘크리트 아치교의 적용, 설계도 10201-201, 2002. 5.9



- (a) 건조수축 및 온도에 의한 신축 (b) 아치상하운동으로 흡수

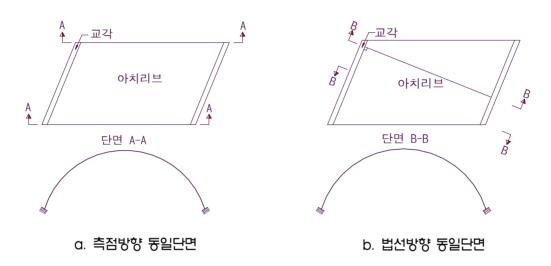
<그림 7.9.3> 아코디언 효과

(4) 곡선교에 대한 적용성 검토

- ① 일반 아치교에서와 같이 곡선교에 적용시에는 평면과 종단상으로 2중 곡선이 발생되어 시공 이 곤란하다.
- ② 적용한계는 직교 형상의 유지가 가능한 범위를 설정한다.
 - 가. Springing선은 동일 높이로 하고 곡선교에 따른 이정량을 교각의 벽체두께 변화로 수용 하는 방안이 있다.
 - 나. 벽체두께 변화는 시각적 꺽임현상의 최소화를 위해 최대 300㎜ 까지 허용한다.

③ 최소곡선반경 한계 설정

가. 교각두께의 차가 과도할 경우 교량 미학적 관점과 시각적인 안정감 측면에서 불리하고. 아치리브, 벽체, 난간 등 시공이 복잡하므로 곡선한계를 설정하는 것이 바람직하다.

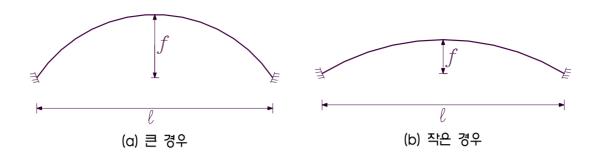

④ 최소곡선반경 기준

[표 7.9.1] 최소곡선 반경기준

지 간 (m)	적용가능 초	н п	
	4차선	8차선	- 비고
ℓ ≤ 25.0	$R_{cr} = 1,600m$	$R_{cr} = 3,200 m$	
25.0< ℓ ≤30.0	$R_{cr} = 2,000 m$	$R_{cr} = 3,800m$	
30.0< ℓ ≤35.0	$R_{cr} = 2,800m$	$R_{cr} = 4,500m$	

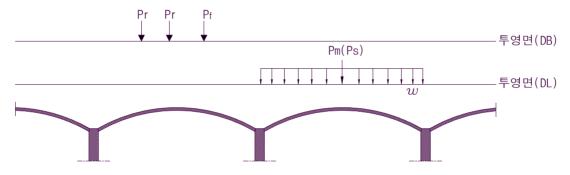
(5) 사교에 대한 적용성 검토

① 사교에서의 아치형상을 측점방향 동일 형상으로 계획하는 것은 거푸집 제작측면에서 곤란하므로 법선방향으로 동일형상이 되도록 계획한다.



<그림 7.9.4> 사각부여 개념

- ② 구조측면에서의 사각의 한계 범위 설정
 - 가. 사각이 중가될수록 단면력이 중가하고, 주모멘트 방향은 법선방향 으로 향하는 거동을 나타낸다.
 - 나. 구조적 측면에서의 한계치 뿐만 아니라 사각이 중가함에 따라 미적으로 불리해지는 점을 고려할 때 사각 10° 까지를 한계치로 설정한다.


7.9.3 구조계 검토

- (1) 아치교에서는 라이즈/스팬비가 클수록 구조적으로 유리하나 미관상 불리하다.
- (2) 일반적으로 1/4~1/5 사이 값을 많이 채택하고 있다.

<그림 7.9.5> 라이즈/스팬비

- (3) 교량 가설조건에 따라 미관 및 구조특성을 고려하여 설정한다.
- (4) 다만. 연속교로서 형하고가 높은 경우에는 $1/2 \sim 1/3$, 단경간교 또는 형하고가 낮은 경우에는 $1/3 \sim 1/4$ 정도를 원칙으로 설정함이 타당하다.
- (5) 활하중은 아치리브 투영면을 기준으로 직접 재하하는 방식 적용한다.

<그림 7.9.6> 활하중 재하방안

(6) 균열제어 방안 검토

① 다경간 연속에 따른 고차 부정정 구조물인 점과 동시에 아치리브와 측벽이 강결되어 상호간 의 거동을 구속하고 있으므로, 구조적 거동이 복잡하고 온도신축 및 건조수축에 의한 균열 발생의 가능성이 큼

구 분	측 벽	아 치 리 브
개념도	신축줄눈	수축줄눈 리브 신축줄눈 교각 기초
개 요	· 교각 Springing부 및 Span중앙부에 신축줄눈을 설치(계속연구검토)	기초 및 교각부에는 신축줄눈을 설치하고 아 치리브에는 신축줄눈을 설치할 경우 구조계가 달라지므로 수축줄눈을 설치하는 것으로 계획

(7) 내진해석 검토

- ① 내부 채움재를 기늉상 부위별로 달리할 경우 중량차가 발생하게 되어 이에 대한 구조적 처리가 다소 복잡하게 된다.
- ② 내부채움재를 종류별로 충별 토괴로 분류하여 지진시 관성력 저감