KDS 17 10 00: 2018

강구조물고임및내화 설계기준 (하중저항계수설계법)

2016년 6월 30일 제정 http://www.kcsc.re.kr

건설기준 제ㆍ개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 제·개정 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 강구조에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개정 연혁은 다음과 같다.

건설기준	주요내용	제·개정 (년.월)
하중저항계수설계법에 의한 강구조설계기준	• 하중저항계수설계법에 의한 기준 제정	제정 (2009.12)
하중저항계수설계법에 의한 강구조설계기준	• 골조의 안정성, 플레이트 거더 및 곡선박스거더교의 휨설 계, 피로 및 파단에 대해 개정	개정 (2014.5)
KDS 14 31 50 : 2016	• 국토교통부 고시 제2013-640호의 "건설공사기준 코드체 계"전환에 따른 건설기준을 코드로 정비함.	제정 (2016.6)

제 정: 2016년 6월 30일 개 정: 년 월 일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 기술기준과

관련단체 : 한국강구조학회 작성기관 : 한국강구조학회

목 차

1.	일반사항	٠ 1
2.	조사 및 계획	· 1
3.	재료	. 1
4.	설계 ······	. 1
	- · 4.1 물고임에 대한 개략설계 ····································	. 1
	4.2 물고임에 대한 개선된 설계	
	4.3 내화설계	
		_

KDS 14 31 50 : 2016

1. 일반사항

이 기준의 규정은 강구조물의 물고임 및 내화 설계에 적용한다.

2. 조사 및 계획

내용 없음.

3. 재료

KDS 14 31 05(3)에 따른다.

4. 설계

4.1 물고임에 대한 개략설계

지붕구조는 물고임에 대한 적절한 강도와 강성을 확보해야 하며 지붕구조는 물고임에 대해 안정을 확보하기 위해 아래의 두 조건을 모두 만족해야 한다.

$$C_p + 0.9 C_s \le 0.25 \tag{4.1-1}$$

$$I_d \leq 3940S^4$$
 (4.1-2)

여기처, $C_p = \frac{504L_sL_p^4}{I_p}$, $C_s = \frac{504SL_s^4}{I_s}$

 L_n : 큰보방향의 기둥간격 (주요 부재길이) (m)

 L_{s} : 큰보의 수직방향 기둥간격(보조 부재길이) (m)

S : 보조부재간격 (m)

 I_{p} : 주부재의 단면2차모멘트 (mm 4)

 $I_{\rm s}$: 보조부재의 단면2차모멘트 $({\rm mm}^4)$

 I_{d} : 보조부재에 의해 지지되는 데크의 단면2차모멘트 (mm^{4}/m)

위 식의 적용에 있어서 트러스와 강재 장선의 경우는 단면2차모멘트, I_s 를 15% 저감해야 한다. 그리고 강재 데크가 주부재에 의해 직접 지지되는 경우 보조부재로 간주한다.

4.2 물고임에 대한 개선된 설계

(1) 4.1에 의한 것 보다 더 정확한 지붕구조의 강성을 평가하는 경우 다음의 계수들을 이용할 수

KDS 14 31 50 : 2016

있다.

① 주부재의 응력지표

$$U_p = \left(\frac{0.8F_y - f_0}{f_0}\right)_p \tag{4.2-1}$$

② 보조부재의 응력지표

$$U_s = \left(\frac{0.8F_y - f_0}{f_0}\right)_s \tag{4.2-2}$$

여기서, f_o : 하중조합(D+R)에 의한 응력

D : 공칭고정하중

R : 물고임의 기여를 제외한 빗물이나 눈에 의한 공칭하중 (MPa)

- (2) 주부재와 보조부재로 구성된 지붕구조에 대해 조합강성은 다음과 같이 평가할 수 있다.
 - ① 주부재에 대해 계산된 응력지표 U_0 에 해당하는 값을 그림 4.2-1에서 찾는다.
 - ② 보조부재에 대해 계산된 C 값까지 수평으로 이동한 후 가로좌표축 눈금을 읽는다.
 - ③ 그 눈금은 주요부재의 유연도상수 상한치를 나타내며 이 상한치가 주부재에 대해 계산된 C_p 값보다 크면 주부재와 보조부재의 조합된 강성은 충분한 것으로 판단할 수 있고 그렇지 않은 경우에는 주부재 또는 보조부재에 대한 강성보강이 필요하다. 또한 그림 4.2-2를 사용하여 위와 비슷한 과정을 검토해야 한다.
- (3) 등간격의 벽체보로 구성된 지붕구조의 강성은 다음과 같이 평가할 수 있다.
 - ① 보조부재들은 무한강성의 주부재에 의해 지지되는 것으로 간주한다.
 - ②계산된 응력지표 U_s 를 그림 4.2-2에서 찾고 U_s 를 나타내는 수평선과 $C_P=0$ 에 해당하는 곡선의 교차점으로부터 보조부재의 유연도상수 상한치 C_s 를 결정한다.
- (4) 기둥에 지지된 보 사이에 설치된 메탈데크로 이루어진 지붕구조의 경우에는 지붕데크의 1m 폭 (S=1.0)에 해당하는 유연도상수 C_s 를 계산하고 그림 4.2-1 또는 그림 4.2-2를 이용하여 강성을 평가한다.

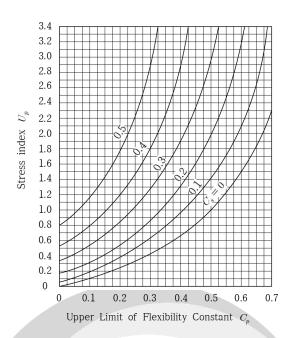


그림 4.2-1 주부재의 한계연성도계수

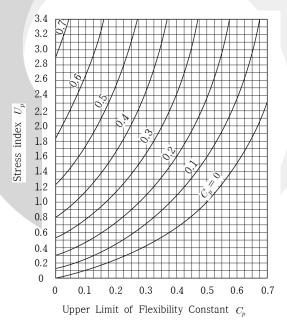


그림 4.2-2 보조부재의 한계연성도계수

4.3 내화설계

화재에 대하여 강구조물의 기둥, 보, 벽, 바닥, 지붕 등 주요 구조부의 내화설계를 수행하기 위한 지침을 제공한다. 설계자는 온도에 따른 구조재료의 열적 및 기계적 특성 변동을 고려하여 화재 시 주요 구조부의 안전성을 평가하여 내화설계를 수행할 수 있다.

KDS 14 31 50 : 2016

4.3.1 설계 고려사항

수직하중 및 수평하중을 지지하는 주요 구조부는 화재 시 고온 및 고열에 견디어 하중을 지지할 수 있는 내화성능을 확보해야 한다. 필요한 경우 설계허가권자와의 협의에 의해 국제적으로 그 적합성이 인정되어 사용되고 있는 내화설계기준을 이 기준의 일부로 사용한다.

4.3.2 적용범위

건축법시행령 제56조(건축물의 내화구조)에 의한 용도 및 규모에 사용되는 강구조물의 주요 구조부에 적용한다.

4.3.2.1 사양적 내화설계

강구조물의 주요 구조부는 건축물의 피난·방화구조 등의 기준에 관한 규칙 제3조 내화구조에서 정하는 내화구조를 사용하여야 한다. 내화구조는 동 규칙 제3조 제1호 내지 제7호에 해당하는 것이거나 또는 동 규칙 제3조 제8호 또는 제27조 및 내화구조의 인정 및 관리기준에 의거 품질시 험으로 내화구조의 성능기준을 확보한 것으로 인정된 구조이다. 또한 동 규칙 제3조 제8호 단서 조항에 해당하는 경우 품질시험을 생략할 수 있다.

4.3.2.2 성능적 내화설계

합리적이고 공학적인 해석방법으로 평가된 구조적 적합시간이 내화구조의 인정 및 관리기준에에서 정하는 내화구조의 성능기준과 동등하거나 그 이상인 경우에 해당 강구조물은 요구내화성능을 확보한 것으로 간주한다. 구조해석에 의한 강구조물의 구조적 적합시간은 4.3.3.3에 따라결정할 수 있다.

4.3.3 내화성능 평가

4.3.3.1 품질시험에 의한 내화성능 평가

내화구조의 인정 및 관리기준에 따른 품질시험은 KS F 2257-1,4,5,6,7 건축구조 부재의 내화시험 방법에 의한 품질시험 방법에 따라 평가해야 한다.

4.3.3.2 품질시험 면제

건축물의 피난·방화구조 등의 기준에 관한 규칙 제3조 내화구조 제8호 단서 조항에 의거 산업표 준화법에 따른 한국산업규격으로 내화성능이 인정된 구조로 된 것은 품질시험을 생략할 수 있다.

4.3.3.3 구조해석에 의한 내화성능 평가

4.3.3.3.1 일반사항

강구조물 및 주요 구조부의 해석방법에 의한 내화성능 평가는 설계자가 설계화재, 구조물의 열 전달, 강재의 온도특성을 고려하여 주요 구조부의 단속 및 연속적 붕괴를 평가해야 한다.

4.3.3.3.2 설계하중 및 강도

(1) 화재 시 강구조물의 설계하중은 고정하중, 활하중, 적설하중 등을 우선적으로 고려해야 하며, 그 이외의 경우에는 해당 강구조물의 하중조건에 맞도록 설정할 수 있다. 하중계수는 타당한 근거에 의하여 합리적으로 결정된 하중계수를 사용해야 한다.

KDS 14 31 50 : 2016

(2) 고온 및 고열에서 주요 구조부의 설계강도는 강재의 온도특성을 고려하여 결정되는 공칭강도에 화재한계상태에 대한 강도감소계수를 곱하여 계산한다. 화재한계상태의 강도저항계수는 상온의 정상상태에 대한 것과 동일한 값을 사용한다.

(3) 설계화재

설계자는 가연물량, 환기면적, 구획재료의 열특성을 고려하여 강구조물의 내부 또는 외부로 부터 기인하는 설계화재의 크기를 결정할 수 있다. 설계화재의 크기는 검증된 실험적 결과를 사용할 수 있다.

(4) 주요 구조부의 온도 예측

화재에 의한 주요 구조부의 온도변화는 대류, 복사, 열전도에 의한 열전달을 고려하여 예측해야 한다. 주요 구조부의 온도예측 방법으로 간단한 열평형 방정식을 활용하거나 또는 정밀한 다차워 열전도 해석을 사용할 수 있다.

(5) 강재의 온도특성

온도에 따른 강재의 재료강도, 탄성계수, 연신률 등 기계적 특성과, 열전도율, 비열, 고온선팽창계수 등 열적 특성의 변동값은 KS D 0026(금속 재료-고온 인장 시험)에 의한 시험방법으로 검증된 값을 사용할 수 있다.

(6) 화재안전성 평가

화재 시 설계하중에 의한 부재력이 구조해석에 의한 부재 설계강도보다 큰 경우 주요구조부의 붕괴가 발생되는 것으로 간주하며, 화재시작으로부터 주요 구조부의 단속 및 연속적 붕괴가 발생되는 동안의 시간을 구조적 적합시간으로 결정한다. 구조적 적합시간은 개별 주요 구조부, 부분골조, 전체구조시스템 등에 대한 구조해석을 통하여 결정할 수 있다.

집필위원	분야	성명	소속	직급
		박영석	명지대학교	교수
		이명재	중앙대학교	교수
		황의승	경희대학교	교수
		성택룡	포스코	그룹장
		이승은	포스코	책임연구원
		이은택	중앙대학교	교수
		이재석	현대제철	교수
		한종욱	명지대학교	교수
		김철환	경북대학교	교수
		최동호	한양대학교	교수
		김상섭	한국기술교육대학교	교수
		양재근	인하대학교	교수
		박용명	부산대학교	교수
		신동구	명지대학교	교수
		이성철	동국대학교	교수
		유정한	서울과학기술대학교	교수
		김성곤	서울과학기술대학교	교수
		조재병	경기대학교	교수
		배두병	국민대학교	교수
		오창국	국민대학교	교수
		김주우	세명대학교	교수
		심창수	중앙대학교	교수
		이경구	단국대학교	교수
		엄태성	단국대학교	교수
		이철호	서울대학교	교수

자문위원	분야	성명	소속
	건축	김규석	동국대학교
	건축	김덕재	중앙대학교
	건축	김동규	서울시립대학교
	건축	김승원	뉴테크구조기술사사무소
	건축	김종락	숭실대학교
	건축	정재철	국민대학교
	건축	최문식	단국대학교
	토목	유철수	고려대학교
	토목	이우현	중앙대학교
	토목	장석윤	서울시립대학교
	토목	장승필	서울대학교
	토목	조효남	한양대학교
	토목	정경섭	충북대학교
	건축	오영석	대전대학교
	건축	김우범	공주대학교
	토목	최상현	한국교통대학교
	건축	신경재	경북대학교

건설기준위원회	분야	성명	소속
	구조	백인열	가천대학교
		박동욱	서울시
		이은택	중앙대학교
		김태진	㈜창민우구조컨설턴트
		장종진	한국토지주택공사

중앙건설기술심의위원회	성명	소속
	이상민	비앤티엔지니어링(주)
	이희업	한국철도기술연구원
	이상희	㈜이디시엠
	박성윤	대림산업
	노성열	동부엔지니어링
	박구병	한국시설안전공단
	김태진	창민우구조컨설턴트

국토교통부	성명	소속	직책
	정선우	국토교통부 기술기준과	과장
	김병채	국토교통부 기술기준과	사무관
	김광진	국토교통부 기술기준과	사무관
	이선영	국토교통부 기획총괄과	사무관
	박찬현	국토교통부 원주지방국토관리청	사무관
	김남철	국토교통부 기술기준과	주무관

설계기준

KDS 14 31 50 : 2016

강구조 물고임 및 내화 설계기준(하중저항계수설계법)

2016년 6월 30일 발행

국토교통부

관련단체 한국강구조학회

05801 서울특별시 송파구 송이로 30길21

☎ 02-400-7104 E-mail: kssc@mail.kssc.or.kr, kssc1989@chol.com

http://www.kssc.or.kr/

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

http://www.kcsc.re.kr