KDS 34 30 20 : 2016

특수지반식재기반

2016년 6월 30일 제정 http://www.kcsc.re.kr

건설기준 제 · 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 코드 제 · 개정 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 조경설계기준에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제 · 개정 연혁은 다음과 같다.

건설기준	주요내용	제·개정 (년.월)
조경설계기준	•조경설계기준 제정	제정 (1999)
조경설계기준	•조경설계기준 개정	개정 (2002)
조경설계기준	•조경설계기준 개정	개정 (2007)
조경설계기준	•조경설계기준 개정	개정 (2013)
KDS 34 30 20 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)

제 정: 2016년 6월 30일 개 정: 년 월 일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회 소관부서 : 국토교통부 녹색도시과

관련단체 (작성기관) : 한국조경학회

목 차

1.	일반사항	1
	1.1 목적	1
	1.2 적용범위	1
	1.3 용어정의	1
	1.4 설계고려사항	1
2.	조사 및 계획	1
3.	재료	1
	3.1 일반사항	1
	3.2 품질 및 성능시험	1
4.	설계	2
	4.1 임해매립지 위의 식재기반	2
	4.2 쓰레기매립지 위의 식재기반	4
	4.3 유지관리	5

1. 일반사항

1.1 목적

저습지·해안매립지·쓰레기매립지 등의 식물생육이 부적합한 환경에 조성되는 식재기반 위에 조경용 식물의 건전하고 지속가능한 생육을 위한 기반의 기능유지를 목적으로 한다.

1.2 적용범위

저습지·해안매립지·쓰레기매립지 등의 식물생육이 부적합한 환경에 조성되는 식재기반 위에 조경용 식물의 건전하고 지속가능한 생육을 위한 식물뿌리환경의 조성에 적용한다.

1.3 용어정의

- 특수지반: 임해매립지, 쓰레기매립지 등 특수 기반 위에 조성되는 식재지반을 말한다.
- 기타 사항: KDS 34 30 10(1.3)을 따른다.

1.4 설계고려사항

1.4.1 전제조건

- (1) 오염된 토양은 토양환경보전법의 오염토양의 정화기준 및 정화방법에 적합하도록 개량한다.
- (2) 식재기반의 바탕이 되는 건축 및 토목 시설·구조물의 안전에 관한 확인이 완료된 것을 전제로 한다.

2. 조사 및 계획

내용 없음.

3. 재료

3.1 일반사항

3.1.1 토양개량

KDS 34 30 10(3.1.1)을 따른다.

3.2 품질 및 성능시험

KDS 34 30 10(3.2)을 따른다.

4. 설계

4.1 임해매립지 위의 식재기반

4.1.1 방풍·방사시설

(1) 시설의 설치

바람이나 모래의 피해를 받을 우려가 있는 식재지에는 방풍·방사를 위한 방풍림 또는 방풍 망·방사망 등을 설계한다.

- (2) 방풍망 설계
 - ①최대풍압의 산정

방풍망 설계에 필요한 최대풍압은 다음의 공식으로 산출한다.

$$D = \frac{1}{2} \times \rho \times C \times \alpha \times V^2 \times A \quad \text{All}, \tag{4.1-1}$$

여기서, D: 풍압력(kg/m²)

ρ : 공기의 밀도(1.25kg · sec²/m³)

C: 저항계수(판상구조물이므로 1.2로 한다)

 α : 방풍망의 차폐율

V: 최대풍속(m/sec)

A : 물체의 최대 투영 면적(m²)

② 방풍망기초 설계

①에서 산출된 최대풍압과 높이를 기준으로 방풍망이 넘어가지 않도록 기초를 설계한다.

- (3) 방사망 설계
 - ① 바람에 날리는 모래로 수목의 생육장애가 우려되는 지역에 적용한다.
 - ② 방사망은 이 기준 4.1.1(2)에 따르되, 모래 등에 의하여 망의 구멍이 막힐 우려가 있는 경우에는 풍압의 증가치를 고려한다.
 - ③ 방사망의 기초는 수목의 성장에 따라 방사망을 높이게 될 것을 고려하여 여유 있는 크기로 설계한다.

4.1.2 관수시설

- (1) 지하에서 염분이 상승하여 식물의 생장에 피해를 줄 우려가 있거나, 토양수분의 부족이 우려되는 식재지에는 관수시설을 도입한다.
- (2) 수목 식재지에서는 살수차에 의한 관수비용과 내구연한을 10년으로 한 관수시설에 의한 관수비용을 산출·비교하여 관수시설의 도입여부를 결정한다.
- (3) 식재지반 하층으로부터의 고농도의 염류가 포함된 물의 상승을 예방하기 위한 급수량은 최 저 3 mm/일을 기준으로 한다.

- (4) (3)에서 요구되는 물의 양에 식물의 흡수 또는 증발산에 의한 소실량을 더하여 총관수량으로 하며, 총관수량에서 자연 강수에 의한 공급량을 공제한 나머지 물을 인공으로 관수하는 것으로 한다.
- (5) 위 이외의 사항 KDS 34 50 65를 따른다.

4.1.3 준설토에 의한 식재지반

(1) 준설토 입도조정

준설토를 제염하여 식재용 토양으로 사용하고자 할 때는 입경 20 μm 이하의 입자 함유율 5% 이하, 포화투수계수 10^{-3} cm/sec 이상이 되도록 한다.

(2) 준설토 제염

- ① 준설토를 식재용 토양으로 사용하고자 하면 제염이 쉽도록 심토층 배수시설을 채용한다.
- ② 준설토를 식재용 토양으로 사용하고자 하면 염소농도 0.01% 이하, 전기전도도 0.2 dS/m 이하, $pH(H_2O)$ 7.8 이하가 되도록 제염한 후, 토양에 대한 이화학적 분석을 통하여 식재용 토양으로서의 적합성 여부를 판단하도록 한다.

(3) 식재지반 깊이

- ① 식재지반은 모세관 현상에 의한 염수 도달충보다 위쪽의 상충부 토양으로 하며, 깊이는 교 목식재지 1.5 m 이상, 관목식재지 1.0 m 이상, 초본류 및 잔디식재지에서는 0.6 m 이상을 확보한다.
- ②염수의 모세관 상승고는 시험에 의하여 정하며, 수분의 상승이 정지된 후 48시간 이상 수분 상승이 일어나지 않는 곳의 높이로 하며, 모세관 상승 시험에 사용되는 토양의 밀도는 최대 다짐밀도의 95% 이상이어야 한다.

4.1.4 전면객토에 의한 식재지반

(1) 전면객토법 적용지역

준설토를 식재지반용토로 사용하기 어려운 곳에 적용하며, 식재밀도가 높은 곳에서는 준설 토 위의 전면적을 객토한다.

- (2) 식재지반 하부의 준설매립토에 대한 조치
 - ① 준설매립토의 염분이 식재지반층으로 확산되어 식물의 생육에 지장을 주지 않도록 충분히 제염하거나 준설매립토와 객토층 사이에 차단층을 설치한다.
 - ② 준설매립토와 객토층 사이에 정체수가 발생하지 않도록 심토층 배수설계를 한다.
 - ③ 염수가 모세관 현상에 의하여 준설매립토를 지나 객토층에 도달하지 않도록 모세관 최대 상승고보다 위쪽의 토양을 식재지반으로 한다.

(3) 객토 깊이

교목식재지 1.5 m 이상, 관목식재지 1.0 m 이상, 초본류 및 잔디식재지에서는 0.6 m 이상으로 하며, 이와 같은 객토층의 깊이가 확보되기 어려울 때는 $0.6 \sim 1.0 \text{ m}$ 깊이의 전면객토를 하고 식재지역을 마운딩하여 생육최소토심을 확보한다.

4.1.5 부분객토에 의한 식재지반

(1) 부분객토법의 적용지역

식재밀도가 낮은 곳(도로변의 가로수 식재 등)에서는 전면 객토법과 부분객토법의 비용을 비교하여 객토방법을 결정한다.

- (2) 준설매립토에 대한 조치4.1.4 (2) 조치에 따른다.
- (3) 식재구덩이

구덩이의 깊이는 교목식재지 1.5 m 이상, 관목식재지 1.0 m 이상, 초본류 및 잔디식재지는 0.6 m 이상으로 설계하고, 바닥면의 너비는 교목은 근원직경의 15배 이상, 관목은 수관폭의 1.5배 이상으로 설계한다. 구덩이 옆면의 기울기는 안식각을 고려하여 결정한다.

- (4) 객토용 토양의 선정
 - ① 객토용 토양은 식재용 토양으로 적합한 것을 선정한다.
 - ② 준설토로부터 염분확산이 우려되는 곳에서는 준설토보다 입자크기가 큰 토양을 객토용으로 채택한다.

4.2 쓰레기매립지 위의 식재기반

4.2.1 복토

- (1) 쓰레기매립장의 복토는 폐기물관리법의 관련 규정에 따르며, 복토용토는 10^{-8} m/sec 이하의 투수계수를 지닌 점토를 사용하는 것을 원칙으로 한다.
- (2) 쓰레기매립장의 복토층 위에 식재지반을 조성하는 시기는 최종매립 후 3년이 경과하고, 배출되는 CH_4 의 농도가 평균 50 ppm 이하이며, 특정지점의 CH_4 농도가 500 ppm을 초과하지 않는 시점 이후이어야 한다.

4.2.2 차단층 설치

- (1) 사전 조치사항
 - ① 침출수의 상승 혹은 가스의 확산을 방지하기 위하여 먼저 복토층 위에 차단층을 설치한 후 식재기반을 조성하도록 설계한다.
 - ② 차단층이 부등침하 등으로 손상되지 않도록 다음의 조치를 설계에 반영한다.

- 가. 차단층을 설치하기에 앞서 기존의 복토층이 침하되지 않을 정도의 충분한 다짐을 한다.
- 나. 토층에는 차단층을 손상할 우려가 있는 이물질이 포함되지 않아야 한다. 차단층을 손 상할 우려가 있을 때는 복토층의 흙을 치환하거나 복토층 위에 적절한 조치를 하는 등 차단층 손상방지대책을 반영해야 한다.
- 다. 차단층은 부직포 등으로 보강하거나 적절한 인장강도를 가지는 불투수성 재료로 조성한다.

(2) 차단층 위 배수시설

차단층은 흙쌓기 후의 심토층 배수를 고려하여 2%의 기울기를 주고, 차단층 위에 흙쌓기 하기에 앞서 심토층 배수시설을 설치하도록 설계에 반영한다.

(3) 가스 배출관 설치

쓰레기 매립지반에서 발생하는 가스가 차단층을 통과할 수 있도록 400 m²마다 1개소 이상의 가스 배출관을 설치하고 배출된 가스가 대기로 쉽게 확산되도록 하며, 가스 배출관 주위에는 위험 표시판과 안내판을 배치한다.

4.2.3 여과층 설치

- (1) 식재지반토양이 배수층으로 흘러들지 않도록 배수층 위에 여과층을 설치한다.
- (2) 여과층 위에는 굵은 입자의 토양을 포설한다.
- (3) 부직포 등으로 여과층을 설치할 때는 미세한 토양입자에 의해 부직포의 공극이 막히지 않도록 배수층 위에 굵은 입자의 토양을 깔고 그 위에 차례로 입자의 크기가 작은 순으로 토양층을 만들어 간다.

4.2.4 식재지반

- (1) 쓰레기매립장의 복토는 폐기물관리법의 관련 규정에 따라 복토용토로는 10^{-8} m/sec 이하의투수계수를 지닌 점토를 사용하는 것을 원칙으로 하며, 복토층 위에 식재지반은 사용 식물의생육 최소토심 이상을 확보하여야 한다.
- (2) 지표면 이하 0.3 m 깊이에서의 토양공기 중 산소의 농도는 18 vol.% 이상, 탄산가스와 메탄 가스는 각각 5 vol.% 이하이어야 한다.

4.3 유지관리

KDS 34 99 10을 따른다.

집필위원	분야	성명	소속	직급
	조경	김영욱	(주)한솔에스앤디	대표이사
	연구책임	이상석	서울시립대학교	교수
	총괄	유주은	강릉원주대학교	겸임교수
		박선영	서울시립대학교 도시과학대학원	

자문위원	분야	성명	소속
	조경	이민우	공주대학교

건설기준위원회	분야	성명	소속
	조경	변영철	한국수자원공사
		박유정	삼성물산
		신경준	㈜장원조경
		김영욱	㈜한솔에스앤디
		이재욱	(사)한국조경학회
		조윤호	중앙대학교
		이형숙	가천대학교
		진승범	이우환경디자인(주)
		박미애	
		최병순	㈜대창조경건설
		조성원	한국토지주택공사
		신지훈	단국대학교

중앙건설기술심의위원회	성명	소속
	김계숙	㈜케이지엔지니어링
	이원아	모자익
	윤은주	한국토지주택공사
	변금옥	㈜도화엔지니어링
	채선엽	동부엔지니어링
	박유정	삼성물산
	김태연	㈜대우건설

국토교통부	성명	소속	직책
	김수상	국토교통부 녹색도시과	과장
	신재원	국토교통부 녹색도시과	사무관
	신현호	국토교통부 녹색도시과	사무관

설계기준

KDS 34 30 20 : 2016

특수지반식재기반

2016년 6월 30일 발행

국토교통부

관련단체 한국조경학회

06130 서울 강남구 역삼동 635-4 과학기술회관 신관 1007호

☎ 02-565-2055 E-mail:kila96@chol.com

http://www.kila.or.kr/

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

a 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr