KDS 34 70 55 : 2016

환경친화적 단지조성

2016년 6월 30일 제정 http://www.kcsc.re.kr

건설기준 제 · 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 제ㆍ개정 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 조경설계기준에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제· 개정 연혁은 다음과 같다.

건설기준	주요내용	제·개정 (년.월)
조경설계기준	•조경설계기준 제정	제정 (1999)
조경설계기준	•조경설계기준 개정	개정 (2002)
조경설계기준	•조경설계기준 개정	개정 (2007)
조경설계기준	•조경설계기준 개정	개정 (2013)
KDS 34 70 55 : 2016	•건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)

제 정: 2016년 6월 30일 개 정: 년 월 일

관련단체 (작성기관) : 한국조경학회

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회 소관부서 : 국토교통부 녹색도시과

목 차

1.	일반사항	1
	1.1 적용범위	1
	1.2 용어정의	1
	1.3 시설물의 구성	1
	1.4 설계고려사항	2
2.	조사 및 계획	3
	2.1 일반사항	3
	2.2 조사	3
	2.3 계획	4
3.	재료 2	1
	3.1 일반사항 2	1
4.	설계 2	2
	4.1 생태적 토지 동선설계 2	2
	4.2 생태순환계획 2	4
	4.3 생물서식처 조성계획 2	5
	4.4 어메니티 자원의 보전 및 활용 2	6
	4.5 성능 적용 설계 2	7

1. 일반사항

1.1 적용범위

신도시 조성을 위한 택지개발이나 단지개발에서 환경친화적 단지 조경을 위한 설계에 적용한다.

1.2 용어정의

- 환경친화적 단지: 거시적으로는 지구환경을 보전하는 관점에서 에너지, 자원, 폐기물과 같은 한정된 지구자원을 고려하고, 중시적으로는 단지주변의 자연환경과 친화하고 조화를 이루게 하며, 미시적으로는 거주자가 생활 속에서 자연과 동화되어 건강하고 쾌적하게 생활할 수 있 는 단지환경을 의미한다.
- 환경친화적 주거단지: 다양한 생물이 안정된 주거환경 속에서 건전한 물질대사를 통하여 자급자족하며 자연과 인간이 건강하게 공존할 수 있도록 조성된 단지를 의미한다.
- 보전적지: 단지 내 토지가 지닌 환경적 가치와 잠재력을 과학적 기준에 의해 평가하며 보전적 지의 보전가치 구분은 절대보전과 상대보전의 두 가지로 분류한다.
- 녹도(Green Way): 도시공원, 하천, 수림대와 같은 녹지를 유기적으로 연결하여 녹지망(green network)을 형성하며, 보행자의 안전과 쾌적성을 확보하고 도시민에게 여가 휴식을 위한 산 책공간을 제공하는 선형의 녹지를 말한다.
- 저류시설: 빗물을 일시적으로 모아두었다가 바깥수위가 낮아진 후에 방류하기 위하여 설치하는 시설로서, 유입시설 저류지 방류시설을 포함하는 일체의 시설을 말한다.

1.3 시설물의 구성

- (1) 생태적 토지이용계획
 - ① 원형녹지
 - ②생태녹지축
 - 가. 주녹지축
 - 나. 부녹지축
 - 다. 생활권 단위 녹지축
- (2) 생태적 토지동선계획
 - ① 보행자 전용도로
 - ② 자전거 전용도로

- (3) 환경친화적 공원녹지계획 녹도
- (4) 생태순환계획 물순환체계 구축
- (5) 우수저류녹지
 - ① 상시저류녹지
 - ②일시저류녹지
- (6) 물순환 관련 도입시스템
 - ① 침투측구
 - ②도로용 멀티측구
 - ③ 취전조
 - ④ 침투유입구
 - ⑤ 침투트랜치
 - ⑥ 침투도랑
- (7) 생물서식처 복원
 - ① 동물의 서식처 복원
 - ② 곤충의 서식처 복원

1.4 설계고려사항

- (1) 환경친화적단지 입지선정 시에는 단지 주위의 자연환경뿐만 아니라 토지이용 및 경관, 환경 오염과 같은 여러 부문의 검토가 필요하다.
- (2) 단지 내 기존 식생, 자연지형, 수로와 같은 자연환경의 변경을 최소화하여 자연환경과의 조화를 유도하고 자연에너지를 최대한 활용함으로써 환경 부하를 줄일 수 있도록 한다.
- (3) 자연환경의 순환체계를 보존하여 단지 내 물질순환이 활성화될 수 있도록 유도한다.
- (4) 일정 규모의 소생물권(Bio-tope)을 조성하여 훼손되어 가는 소생물권을 복원하기 위한 방안을 마련한다.
- (5) 단지 내 주민이 쾌적하고 건강한 주거생활을 영위할 수 있도록 주호 내·외부 공간을 계획하 도록 유도하며, 소규모 광장이나 공용공간을 도입하여 주민의 활동공간을 조성한다.

KDS 34 70 55: 2016

2. 조사 및 계획

2.1 일반사항

2.1.1 환경친화적 단지계획의 수립 필요성

- (1) 거주환경에 대한 단순한 환경의 문제 인식과 대처라는 과거의 소극적 방식에서 환경문제의 해결을 위한 실천이라는 적극적 방식으로 물리적 주거환경과 삶의 방식으로 전환하며, 에너 지가 절약되고 지속가능한 주거단지 개발을 지향해야 한다.
- (2) 환경적으로 건전하며 지속가능한 주거단지의 창출을 위하여 아래 사항들을 고려해야 한다.
 - ① 환경친화적 토지이용 교통 정보통신망을 구축한다.
 - ② 주거단지가 자연과 공생할 수 있도록 생태환경 및 녹지를 조성한다.
 - ③물・바람을 적절하게 활용한다.
 - ④ 에너지 절약적 토지이용구조를 모색한다.
 - ⑤ 수질, 대기, 토양오염, 소음진동과 같은 환경과 폐기물 관리를 한다.
 - ⑥시각 회랑 확보, 스카이라인 조절과 같이 경관을 양호하게 유지하는 기법들을 도입하여 어메니티를 확보한다.

2.1.2 환경친화적 단지계획의 기본방향

- (1) 지속가능한 개발 개념에 기초하여 지구환경의 보전과 주변 환경과의 친화를 기본방향으로 환경친화적 계획요소를 적극적으로 도입한다.
- (2) 지구환경의 보전을 위해서는 지구의 환경이나 순환계, 생태계가 더 이상 나빠지지 않도록 주택이나 주거지 개발 시 지구환경에 부하를 가능한 최소화 한다.
- (3) 자연환경과의 친화를 위하여 주택이나 거주자가 가까이에 있는 자연환경이나 생태계를 즐겨 조화로운 관계를 유지해 갈 수 있도록 한다.

2.2 조사

2.2.1 환경친화적 단지 조성을 위한 기초조사

- (1) 환경친화적 단지 조성을 위해서는 사업지구의 생태환경적 특성을 파악하고 이에 기반을 둔 토지이용계획을 수립하여야 한다.
- (2) 대상지의 자연지리, 동식물 분포, 생태계의 구조와 기능, 도시 미기후와 같은 인자들에 대한 조사를 기초로 하여 단지 내 환경특성에 대한 종합적인 평가를 하고, 최종 분석 항목 간의 연 관성을 입체적으로 분석한다.

3

2.2.2 생물서식처 조사

- (1) 생물서식처의 조사는 환경 분야 조사와 공간분야 조사로 나누어지는 데, 환경조사와 공간조사는 동일한 가치, 합의된 조사주기, 동일한 축척의 지도사용이 이루어져야 한다.
- (2) 생물서식처 조사 시 고려되어야 할 항목은 다음과 같다.
 - ① 식물과 식생
 - ② 동물군의 선택
 - ③ 자연보호와 관련된 작은 소생물권(bio-top)
 - ④ 녹지율과 구조
 - ⑤ 토양피복도
 - ⑥ 인간이 도시에서 자연을 느끼고 체험할 수 있는 잠재성
 - ⑦경관 상 특징적 요소
- (3) 생물서식처의 조사를 통하여 도출하여야 하는 결과치는 다음과 같다.
 - ①소생물권(bio-top) 유형 표본 지역의 도면과 설명
 - ②식물상, 식생, 동물상, 동물군에 대한 연구자료
 - ③소 공간 구조, 녹지구조, 토양피복, 자연접촉의 잠재성, 경관의 양적 질적 자료
 - ④계획사업과 구체적인 관리에 대한 제안

2.3 계획

2.3.1 환경친화적 단지 입지선정

- (1) 환경친화적 단지 입지 선정 시 고려할 사항은 다음과 같다
 - ①단지의 자연환경, 사회경제적 환경과 문화환경과 같은 환경인자들을 고려한다.
 - ② 대중교통 및 보행환경을 고려한다.
 - ③ 수계 및 녹지 자원을 활용한다.
 - ④ 공공시설인 유수지 및 저류지와의 연계를 고려한다.
 - ⑤ 경관계획을 고려하여 단지 주변의 자연경관을 활용한다.
- (2) 입지선정 시 고려사항을 바탕으로 검토해야 할 주요 요소는 다음과 같다.
 - ① 자연환경 부문 : 지형, 지질, 기상, 동식물상, 생태녹지축 등
 - ② 토지이용 및 경관 부문 : 공간구조, 교통, 보전적지, 공원녹지 확보, 경관보존 등
 - ③ 환경오염 부문 : 환경 위해성 등
- (3) 환경친화적 단지 입지는 전 항의 입지 선정 시 검토 요소를 바탕으로 적정 지역에 단지를 입지시키도록 한다.
 - ① 기후인자의 경우 바람길에 위치하고 냉기류 지역에 속하지 않는 지역으로 주향이 남향을 바라보는 경사지 및 평지를 적지로 한다.

- ②지형인자의 경우 완경사 지역이 적지이며, 쾌적하고 안전한 보행 및 자전거 동선 네트워크를 계획한다.
- ③ 자연자원인자의 경우 수계 및 녹지네트워크가 교차하는 지역으로, 유수지와 저류지가 인접하여 수량 확보가 쉬운 지역이 적지이다.
- ④ 교통인자의 경우 순환교통망이 구축되어 대중교통을 이용하여 도심접근이 편리한 지역이 적지이며, 단지 내부는 녹색교통을 체계적으로 계획하여 승용차 이용률을 줄인다.
- ⑤ 자연에 순응 하고 스카이라인 조성 가능한 지역이 적지이다.

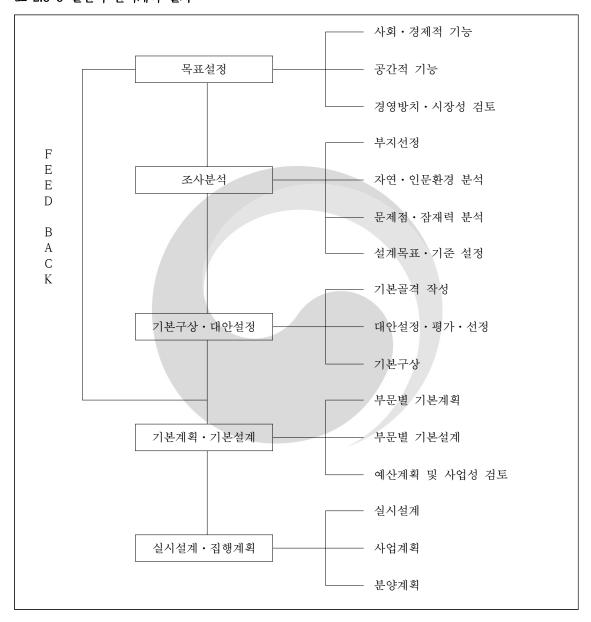
표 2.3-1 환경친화적 단지 입지 선정 시 검토 주요 요소

대분류	중분류	소분류	세부항목
		-l-Pl	급경사 지역의 입지 제한
		지형	일정표고 이상 지역에 대한 개발 제한
		지질	개발이 제한되는 지형 지질
		기상	홍수 발생, 상습침수지의 회피
	자연 환경		보전이 필요한 동ㆍ식물종과 집단 서식처 파악
		동식물상	녹지자연도 보전등급의 입지제한
			생태자연도 보전등급의 입지제한
		ᄱᆒ노키ᄎ	생태녹지축(광역, 도시)의 위계 고려
		생태녹지축	중요 생태녹지층의 설정
		공간구조	인근 도시와의 공간 구조적인 연계성
입지선 정단계			상위 환경정책 및 환경계획과의 적합성
0 2 "	토지 이용 및 경관 보존	교통	불필요한 교통 발생 유발 고려
			접근을 위한 기존 도로와의 연계성 검토
		경관 보전적지	보호지역 및 보전 용도상의 개발입지 제한
			국토환경성평가 결과 보전적지에 대한 개발입지 회피
		공원녹지 확보	적정 공원녹지율의 확보
		거리버저	수려한 자연경관의 훼손 회피
		경관보전 :	보전가치가 높은 문화경관의 훼손 회피
	_, ,		오폐수처리의 수용 능력 검토
		환경 오염 환경 위해성	영향 대기질의 검토와 입지 회피
	7 8		영향 소음진동의 검토와 입지 회피

2.3.2 환경친화적 단지 계획기준

- (1) 환경친화적단지 계획기준은 환경친화적 단지의 개념에 부합하도록 설정하며 다음 사항을 고려하여 계획을 수립한다.
 - ① 단지 주변의 환경에 미치는 영향 최소화

- ②에너지 및 자원의 절약
- ③물질 순환 활성화
- ④ 자연 생태계 회복
- ⑤ 단지 내 주민의 쾌적하고 건강한 환경 제공
- (2) 환경친화적 단지 조성을 위한 계획기준은 개발방식, 자연 및 지형, 단지 및 건축, 라이프 주기로 구분하여 검토한다.


표 2.3-2 환경친화적 단지조성을 위한 계획 기준

구분	계획기준	계획예시	
		용적률, 호수밀도 등의 하향조정	
개발방식	개발밀도 조정	지역 용량을 고려한 밀도배분	
		토지효율, 일조, 통풍, 환경을 고려한 블록의 형태와 배치	
	친수공간 조성	자연형 하천, 실개천, 분수, 연못, 기존 수자원을 적극적으로 활용 한 친수공간 조성	
	수자원 활용	중수도, 우수 집수시설, 투수성포장 및 투수면적 최대화	
	녹지 조성	선형 녹지대 연계, 생태통로, 인공산 조성	
자연 및	에너지 활용증대	폐기물 소각열 이용, 지역 난방시설의 확대, LPG, LNG 등 청정연료 사용 확대	
지형	소생물권 조성	저습지, 생태학습원, 조류 우리 등 생물 서식공간 조성	
		기존지형을 활용한 택지조성, 표토보전 및 재활용	
	자연지형 이용	현 식생보전 및 재활용	
		생태적 배후지(산림, 습지 등) 보전으로 자정능력 확보	
	미기후 조절	다양한 식재, 일조, 통풍, 조망을 고려한 주동 배치 및 획지분할	
	그린네트워크시스템	오픈스페이스의 체계화, 녹도(Greenway)조성, 생태통로 조성	
	도로망 개선	대중교통 중심의 교통계획	
	주차장 확충	자전거도로망 연결, 보행자전용도로 설치	
단지 및 건축	T 사 경 축 중	지하주차장 설치 및 지상부 녹화	
	건물 내・외부 녹화	도로변 또는 진입부 공용주차장	
	신눌 내・되수 극와	옥상부 녹화, 벽면 녹화, 발코니·현관 녹화	
	사이버 공간 조성	광통신망 기반시설 설치	
라이프 사이클 -	주민공동체 활동 공간 조성	소규모 광장, 주동 내 공용공간(필로티)	
	단지관리 주민 참여	단지관리 및 청소에 주민 참여	

2.3.3 환경친화적 단지 계획 절차

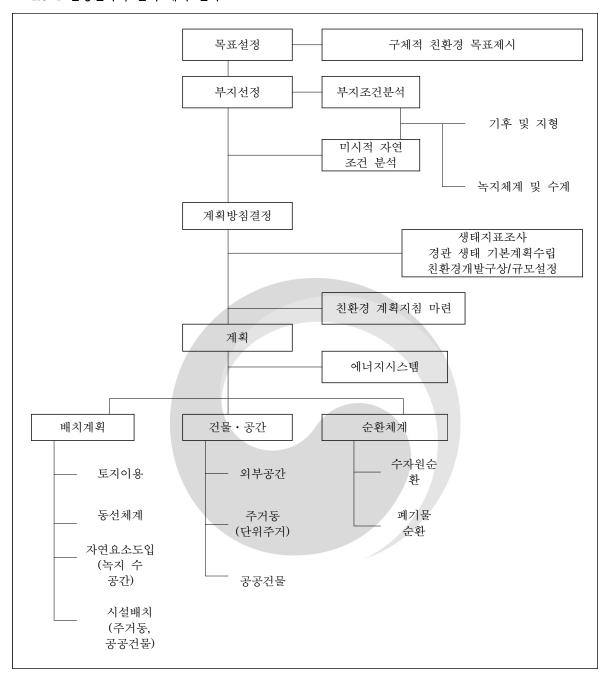

(1) 일반적으로 단지계획 수립과정은 목표설정 단계, 조사분석 단계, 기본구상 및 대안 설정 단계, 기본계획 및 기본설계 단계, 실시설계 및 집행계획 단계로 구분한다. 이러한 과정은 피드백과정을 거치며 계획을 보완한다.

표 2.3-3 일반적 단지계획 절차

(2) 환경친화적 단지계획의 절차는 부지 선정부터 기후 및 지형, 녹지체계 및 수계와 같은 자연환 경적인 부문에 주안점을 두어 부지를 선정하며, 환경친화적인 계획기준과 지침을 통해 계획한다.

표 2.3-4 환경친화적 단지 계획 절차

- ①목표설정: 환경친화적 단지 조성을 위한 구체적인 친환경 목표를 제시한다.
- ② 부지선정 : 기후 및 지형, 녹지체계 및 수계와 같은 인자들을 자세히 분석하여 적정 부지를 선정한다.
- ③계획방침 결정: 계획에 반영할 수 있도록 미시적으로 부지의 자연조건을 분석하여 부지에 관한 구체적인 환경정보를 확보하고 부지가 가지고 있는 환경조건에 부합되는 환경친화적 계획의 기본방향과 계획요소들을 선택한다.
- ④계획: 환경친화적 단지 계획의 지침을 선정하여 분야별로 계획한다.

2.3.4 생태적 토지이용계획

- (1) 산림을 비롯한 원형녹지 보전을 통한 생태환경 보전계획
 - ① 원형녹지설정 방법

가. 원형녹지를 설정하기 위해서는 원형녹지 보전을 위한 계획 지침 및 기준들을 제시한다.

표 2.3-5 원형녹지 보전을 위한 환경적 평가기준

부문	주제도	평가 기준	등급
	생태 자연도	1등급	1
	경네 사진도	2등급	2
		3영급 이상	1
	임상도	2영급	2
산림 및 녹지 생태		1영급 이하	3
부문	녹지자연도	8등급 이상	1
		7등급	2
		6등급 이하	3
		산림녹지율 30% 미만	1
	토지 피복 분류도	산림녹지율 30% 이상	기준에 의한 평가
수생태 부문	하천 및 저수지	_	1
지형 부문	경사도	25% 이상	1

- 나. 원형녹지를 추출하기 위하여 생태 자연도, 임상도, 녹지자연도, 토지피복 분류도, 경사 도, 하천 등을 조사 분석한다.
- ②보전해야 할 원형녹지 추출: 보전해야 할 원형녹지는 아래와 같이 부문별로 구분하여 추출한다. 가. 산림 및 녹지생태 부문
 - (가) 생태 자연도 분석을 통한 보전지역 설정

표 2.3-6 생태자연도 평가기준

구분	등급	평가 기준	
	1등급	자연환경의 보전 및 복원	
생태자연도	2등급	자연환경의 보전 및 개발·이용시 훼손 최소화	
	3등급	체계적인 개발 및 이용	

(나) 임상도 분석을 통한 보전지역 설정

표 2.3-7 임상도 평가 기준

영급	부호	구분기준
1영급	I	입목지로서 수령 1~10년생 입목의 수관점유 비율이 50% 이상인 임분
2영급	II	입목지로서 수령 11~20년생 입목의 수관점유 비율이 50% 이상인 임분
3영급	III	입목지로서 수령 21~30년생 입목의 수관점유 비율이 50% 이상인 임분
4영급	IV	입목지로서 수령 31~40년생 입목의 수관점유 비율이 50% 이상인 임분
5영급	V	입목지로서 수령 41~50년생 입목의 수관점유 비율이 50% 이상인 임분
6영급	VI	입목지로서 수령 51년생 이상 입목의 수관점유 비율이 50% 이상인 임분

(다) 녹지자연도 분석을 통한 보전지역 설정

표 2.3-8 녹지자연도 평가 기준

	7.19	평가 기준		
등급	구분	도시지역	도시지역 외	
1등급	시가지	체계적인 개발・이용	체계적인 개발・이용	
2등급	농경지	체계적인 개발・이용	체계적인 개발・이용	
3등급	과수원	체계적인 개발・이용	체계적인 개발ㆍ이용	
 4등급	2차 초원(A)	체계적인 개발・이용	체계적인 개발・이용	
5등급	2차 초원(B)	체계적인 개발ㆍ이용	체계적인 개발ㆍ이용	
6등급	조림지	상대보전	체계적인 개발ㆍ이용	
7등급	2차림(A)	절대보전	상대보전	
8등급	2차림(B)	절대보전	절대보전	
9등급	자연림	절대보전	절대보전	
10등급	고산자연초원	절대보전	절대보전	

(라) 토지피복분류도 분석을 통한 보전지역 설정

표 2.3-9 토지피복분류도 구분기준

대분류	주요내용 분류	세분류
	주거지역	단독주택지역
	ナババゴ	공동주택지역
		경공업지역(농공단지 등)
시가화 건조지역	산업지역, 상업지역	중공업지역(대규모 공단지역)
		상업지역
		혼합지역
		정유소, 가스용압소

대분류	주요내용 분류	세분류	
	중합시키쉬 / ㄷ ㄲㄱㅋ	오락・휴양시설, 공원	
	혼합시가화 / 도시구조	경기장	
		공항	
		항만	
	교통지역	철도	
		도로	
		기타 교통・통신시설	
		취・정수장	
		하수종말・폐수처리장	
시가화	고고기서무	발전시설	
건조지역	공공시설물	매립지. 소각장	
		댐, 제방	
		교육・교정・군사시설	
	L-	경지정리가 된 논	
	논	경지정리가 안된 논	
	밭	밭	
농업지역 -	하우스재배지	하우스재배지	
중립시력	가축사육시설	가축사육시설	
		과수원	
	기타 재배지	원예/조경재배지/묘포원	
		농장/농원/목장/방목장	
	활엽수림	자연활엽수림	
	担 省下日	식재활엽수림	
산림지역	키여스리	자연침엽수림	
	침엽수림	식재침엽수림	
	혼효림	혼효림	
	초지	자연초원	
녹지/초	녹지	골프장	
지	コツ	공원묘지	
	도심녹지	도심녹지	
습지	내륙습지	내륙에 있는 늪	
H / Y	<u> </u>	토탄(土炭), 이탄(泥炭) 늪	

나. 수 생태 부문

(가) 단지 내 하천의 규모 및 특징을 조사하여 녹지대와 연계한 수변공간 조성, 소 생물 서식지, 생태통로, 생태네트워크 형성 시에 활용할 수 있는 자원으로 가치를 판단한다.

(나) 수 생태 부문은 단지 내 기온, 습도의 조성, 통풍작용과 같이 미기후 조절에 영향을 미치는 요인이다.

다. 지형 부문

지형부문의 보전녹지 추출을 위해 경사도와 표고와 같은 지형 인자들을 고려한다.

표 2.3-10 경사도 및 표고 평가 기준

항목	게 Η XL 다	평가 기준		
	세부항목	절대보전	상대보전	
경사도	일정 경사 이상 개발 제한	25%	15%	
丑卫	일정표고 이상 개발 제한	농경지 평균표고로부터 60m 이상	40m 이상	

- (2) 보전적지 결과분석에 의한 보전용도지역 설정
 - ① 보전적지 설정 기준 제시

보전적지 설정은 해당 지구의 생태적 특성, 자연 지리적 특성 및 경관적 특성을 고려한 세부 평가항목을 선정하여 평가 기준을 제시한다.

표 2.3-11 보전적지 설정 기준

 분야	평가항목		평가	· 기준
			절대	상대
생태	생태자연도	생태 자연도에 의한 보전대상 지역 선정	I 등급	II 등급
적	녹지자연도	녹지 자연도에 의한 보전지역의 선정	8등급 이상	7등급 이상
특성	크게지 한고	그가 자근도에 되면 또한거리의 단종	도시 : 7등급 이상	도시역 : 6등급 이상
	경사도	택지개발에 부적당한 경사지역 선정	30%	15%
자연	丑고	일정표고 이상 지역에 대한 개발제한	70m 이상(5부능성)	60m 이상(4부능성)
지리		저수지 및 습지의 경계부 보전	0	30
적 특성	수변공간	하천변 녹지 보전	상류10km 이내 20m	상류 10km 이내 60m
	하천변 녹지 보전		상류10km 이내 3m	상류 10km 이내 15m
경관	자연경관	스카이라인의 조망권 침해 여부	능선 좌우 30m(4부)	능선 좌우 50m(3부)
적 특성	시청세리	간선도로변 완충녹지 보전	경계부 30m	경계부 50m
7 0	사회생태	고속국도변 완충녹지 보전	경계부 50m	경계부 80m

KDS 34 70 55: 2016

- ② 보전적지 분석을 통한 생태축 설정 방법
 - 가. 보전적지의 구분은 절대보전지역과 상대보전지역의 두 가지 보전지역으로 분류한다.
 - 나. 절대보전지역은 원형 존치하도록 하고, 상대보전지역은 보전해야 하되 개발이 불가피할 경우 자연 친화적 개발을 유도한다.
 - 다. 생태녹지축은 보전적지 기준제시, 항목별 보전적합성 분석, 최소기준법에 의한 보전적지 도출, 위계별 녹지거점 및 녹지 폭원 설정, 총체적 녹지네트워크 구축의 단계를 거쳐 설정한다.

표 2.3-12 생태녹지축 설정 방법

1단계	보전적지 기준제시	
		절대/상대보전지역 기준
2단계	항목별 보전 적합성 분석	
		기준항목별 주제도 분석
3단계	최소기준법에 의한 보전적지 도출	
		절대/상대보전지역 도면화
4단계	위계별 녹지거점별 및 녹지 폭원 설정	
		위계별 녹지 거점 및 녹지 폭원 지정
5단계	총체적 녹지 네트워크 구축	

③생태녹지축 설정 방법

생태녹지축은 아래와 같은 방법을 통하여 설정한다.

- 가. 보전적지분석을 통한 방법
 - 보전적지 설정기준에서 제시한 내용을 분석하여 설정한다.
- 나. 동물이동 모의실험에 의한 방법
 - (가) 프로그램을 이용한 모의실험 결과인 이동 경로를 중첩하여 시각적으로 표현하며, 이동 중 방문횟수가 많은 지역을 최적의 생태축 입지로 설정한다.
 - (나) 동물이동 모의실험 시 고려사항은 동물의 이동성 및 연결성이며, 동물이동 빈도가 높은 지역, 동물이동 증진에 의한 도시 내 생물다양성 증진에 기여할 수 있는 지역 이 생태축 설정의 기준이 된다.
- 다. 연결성 평가에 의한 방법
 - (가) 분절된 각각 녹지 조각들의 생태적 연결성을 평가하여 생태축 설정의 기준으로 삼는다.
 - (나) 다양한 연결성 지수를 평가하여 연결성 증대에 기여도가 높은 녹지축을 주요 녹지축으로 선정한다.
- 라. 전문가 판단에 의한 방법

조경학, 생태학, 도시계획 등 공간 환경계획 전문가들이 기존 지형도를 활용하여 생태

축을 설정하고 현장답사를 통해 바로잡는 방법이다.

④ 위계별 생태녹지축 설정

생태녹지축은 전항에 기술한 생태녹지축 설정방법과 기준을 토대로 설정하며, 생태녹지축 설정 시 ① 주 녹지축, ② 부 녹지축, ③ 생활권 단위 녹지축으로 구분하여 위계별 생태녹지축을 설정한다.

표 2.3-13 생태축의 핵심녹지 및 거점(징검다리)녹지 확보 기준

	핵심	녹지	징검다리녹지		
T t	최소기준	적정기준	최소기준	적정기준	
광역녹지축	5km²	10km²	1km [*]	2.5km [*]	
도시녹지축	1km²	2.5km²	0.1km²	0.5km	
지구(단지) 녹지축	0.05km (5ha)	0.1km² (10ha)	0.01km (1ha)	0.05km² (5ha)	

표 2.3-14 생태축의 통로 폭원의 확보 기준

계획항목	세부항목		계획기준		
শাৰ্পদ			하안	중간	기본
	광역 녹지축	주 녹지축	700m	1,100m	1,500m
녹지축의 폭원 (Width)		부 녹지축	300m	500m	700m
	도시 녹지축	주 녹지축	100m	150m	200m
		부 녹지축	30m	60m	80m
	지구 녹지축	주 녹지축	15m	20m	30m
		부 녹지축	5m	10m	20m

가. 주 녹지축

주 녹지축은 여러 도시에 광역적으로 걸쳐 있는 녹지로서 지역규모에서 종 다양성 보전에 중요한 역할을 하는 중요한 종의 공급원이 되기 때문에 부 녹지축 또는 생활권 단위 녹지축보다는 규모와 폭이 크게 설정되어야 한다.

나. 부 녹지축

부 녹지축은 도시 전체에 걸쳐 있는 녹지로서 지역규모에서 종 다양성 보전에 중요한 역할을 하는 중요한 종의 공급원이 되기 때문에 생활권 단위보다는 규모와 폭이 크게 설정되어야 한다.

다. 생활권 단위 녹지축

도시의 부 녹지축과 연계된 단지단위에 녹지네트워크를 구축한다. 단지에 연결되는 녹지네트워크 구축 및 보행자전용도로와 녹도의 연계를 고려한다. 단지와 인접한 도로는 완충녹지를 확보한다.

2.3.5 생태적 토지 동선계획

- (1) 환경부하를 줄이고 보행의 편의성과 저공해 교통수단을 이용하기 위한 보행네트워크와 자전 거 이용 활성화, 환경 친화적 교통방안을 모색한다.
- (2) 질소산화물 규제를 위한 제도 실행이 중요하며 동시에 교통수요의 저감, 자동차 교통량의 저 감, 주행성을 향상시킬 수 있는 방법을 계획한다.
- (3) 분산된 토지이용을 활용하도록 주도로를 격자형 패턴으로 조성하되, 거리의 폭과 경관의 도시설계는 인간스케일을 고려한다.
- (4) 보행자의 안전을 위하여 보차분리를 하고, 연계교통 접근방식을 통해 교통량 감소를 유도한다.

2.3.6 환경 친화적 공원녹지계획

- (1) 생태적 식재기법
 - ① 식재층 조성을 위한 방법

식재층은 경사에 따라 아래와 같이 구분하여 조성한다.

- 가. 식재층 0~3% 경사지 표면배수에 문제가 있으므로 식재 시 큰 규모군의 식재군을 형성해주거나 마운딩 처리 한다
- 다. 식재층 8~15% 경사지 구릉지역으로 주변자연과 조화되는 향토수종으로 심는다.
- 라. 식재층 15~25% 경사지 경사가 심하므로 가급적 작은 규격의 향토수종으로 심는다.
- ②생태적 식재계획
 - 가. 녹지는 조류, 곤충류, 파충류, 양서류, 어류의 생태를 먼저 파악하고 이들의 서식환경을 고려한다.
 - 나. 목표 수림을 위하여 수림의 성장과 쇠퇴과정을 예측하여 단계별로 식생관리를 한다.
 - 다. 식생밀도를 강화하고 녹지의 종 다양성을 높이고 단위면적당 임목축적량을 높이기 위해서는 다층적 식재구조로 계획한다.
 - 라. 종 다양성 보호와 식생연속성 유지를 위해 향토수종의 식재와 생태계 기능향상 및 생물 서식환경 조성을 위해 자생종을 심는다.
- ③ 공원녹지계획
- ④ 공원녹지율 확보 방안

공원녹지율은 아래와 같은 방법을 통하여 확보할 방안을 마련한다.

가. 녹도 조성을 통한 공원녹지율 확대

- 나, 녹지보전
- 다. 미개발지의 활용
- 라. 자투리땅 및 수변 공간 이용
- 마, 녹지면적 훼손방지
- ⑤ 공원녹지체계 형성
 - 가. 사업지구가 산림지역을 포함할 경우 일정 면적 이상을 원형보전지역으로 확보한다.
 - 나. 지구 내 매립지가 편입되는 경우 공원 용지화하여 토지이용 및 경관에 효율성을 증대하도록 한다.
 - 다. 단지 내 보행자도로, 녹도, 실개천, 녹지회랑을 차량동선에 의해 단절되지 않도록 체계 적으로 조성한다.
 - 라. 주변 녹지대, 자연녹지, 공원, 둔치, 제방과 같이 여러 유형의 녹지공간과 유기적으로 연계한다.
 - 마. 공원녹지체계는 생물이동통로, 바람길, 물순환체계, 경관축, 도시기후 관리벨트 등과 상호 연계되도록 한다.

(2) 생태녹화시스템 계획

- ①녹지네트워크를 형성하여 야생동 식물과 인간이 함께 공존할 수 있는 자연환경을 조성한다.
- ② 숲 재생, 비탈면 녹화, 나지녹화 및 인공녹화와 같은 기법을 활용한 녹지 네트워크 구축을 한다.
- ③생태시스템의 거점지역인 도시 내 주요산지는 주변 농지, 농지, 하천 및 습지와 구조적으로 서로 연계되도록 계획한다.
- ④기존 녹지는 적극적으로 보전하고, 공원이 부족한 공간에는 녹지를 우선적으로 배치한다.
- ⑤기존 자생수목은 최대한 보전하고, 보전이 어려울 때는 이식을 통해 활용함으로써 녹지의 연결체계를 조성한다.
- ⑥ 자전거도로, 보행자도로는 가능한 녹도로 구성하여 보행동선과 내부 녹지공간, 외부 자연 요소를 선적으로 연결한다.
- ⑦도로변 열주, 생울타리, 완충녹지와 같은 선적인 녹화요소를 활용하여 단지 내외의 녹지를 연계해 준다.
- ⑧ 단지의 경계나 지형이 급변하는 지역에는 수림대를 조성하여 녹지대를 연결시켜 준다.

(3) 녹도

- ①녹도 설치의 일반원칙
 - 가. 보행자의 안전, 쾌적성 확보 등을 위해 곡선형으로 설계하고, 자전거 통행을 고려하여 안전시거를 확보하며 지형과 조화를 고려한다.
 - 나. 여유 폭원을 확보하여 초화, 지피 및 수목이 식재될 수 있는 공간을 계획하여 녹화밀도를 높여준다.
 - 다. 보행 및 자전거 통행의 결절지에는 다양한 성격의 휴식공간을 설치한다.

KDS 34 70 55: 2016

- 라. 보행 중 휴식을 취할 수 있도록 휴식 및 편익시설을 설치한다.
- 마. 공간별로 특색 있는 수목, 시설물, 포장, 조명과 같은 요소들을 도입하여, 이용자들이 다른 공간으로 자연스럽게 이동할 수 있도록 한다.

2.3.7 생태순환계획

- (1) 물순환체계 구축
 - ① 환경친화적 단지 조성을 위해 우수 저류 및 침투, 하수처리수의 재이용, 유수지 도입, 하천수 활용. 갈수기 유지용수량 확보와 같은 물순화체계에 관한 계획을 수립한다.
 - ②자연배수체계, 우수 순환체계, 우수 저류녹지, 물 순환 관련 도입시스템 분야별로 구분하여 계획한다.
- (2) 자원절약 및 에너지순환체계 구축
 - ① 자원절약시스템 구축
 - 가. 태양열집열판을 설치하여 냉난방 및 온수공급을 한다.
 - 나. 연료전지, 수소발전, 지열, 바이오매스와 같은 신재생에너지를 사용한다.
 - 다. 일조 및 일사량을 고려하여 주동을 배치하고, 건축물의 치밀한 외관구성으로 가용면적 대비 외피 면적 비를 최소화한다.
 - 라. 열 완충공간을 계획하여 에너지이용 효율을 극대화하고, 지역 내 녹지 또는 수 공간을 활용하여 여름철 냉방효과를 증진시킨다.
 - 마. 건물 내부는 통풍대를 계획하여 자연채광과 통풍을 유도한다.
 - 바. 식재 설계 시 에너지절약을 고려하여 식재유형을 도입한다.
 - ②지형 및 지세 활용
 - 가. 지형, 지세를 고려한 단지배치로 에너지절약, 비용절감, 생태계 훼손을 최소화하도록 한다.
 - 나. 입체적인 토지활용계획을 통해 지형변형과 토량발생을 최소화하여 자연지형의 보전과 경제성을 도모한다.
 - 다. 단지 내 옹벽 설치를 최소화하고, 급경사지의 변경을 최소화하여 자연지형을 최대한 보전한다.
 - 라. 35% 이상의 급경사지에서는 개발을 제한하도록 하고 구릉지는 저층 고밀형으로 하여 토지이용 효율을 높인다.
 - 마. 지형 경사를 이용한 물순환시스템을 구축하여 생태적으로 건강하고 안정된 단지로 조성한다.
 - ③미기후 활용
 - 가. 주변 지역의 산림이나 수목을 바람막이로 이용하고 건물 내 교차통풍이 가능하도록 설계하여 단지 내부가 쾌적한 환경이 되도록 한다.
 - 나. 지역 특유의 기후변화와 온도변화의 요인이 될 수 있는 반사열, 아스팔트, 도로로 인한 복사열은 줄일 수 있도록 한다.

- 다. 우기와 건기로 인한 강수량의 차이는 단계적인 물순환시스템을 구축하여 보완하도록 한다.
- 라. 우기에는 기존 연못, 우수저류조, 유수녹지, 도시저류지와 같이 우수를 저장할 수 있는 공간에 우수를 저장한다.
- 마. 건기에는 우기 때 저류한 우수를 단지 내 실개천이나 개방 수로의 유지용수량으로 활용 한다.

④ 건물녹화

- 가. 건물녹화는 옥상녹화, 벽면녹화, 테라스녹화, 플랜트박스 녹화와 같은 녹화를 말한다.
- 나. 건물녹화는 도시열섬 완화, 경관개선, 소음 완화, 방재방열과 같은 환경개선기능을 할수 있어야 한다.
- 다. 옥상녹화는 도시 내 단절된 생태계를 연결해 주기 위한 점적 생태통로로서의 기능을 할수 있어야 한다.
- 라. 벽면녹화는 도시 건물의 미관을 향상하고 여름철 직사광선을 차단하여 건물 내 온도를 저감 시킬 수 있도록 계획한다.

(3) 대기 순환 및 바람통로 체계구축

- ① 바람길을 확보하기 위해서는 도시 내 미기후와 지형조건을 고려하여 교외녹지와 시가지 내의 녹지 및 수변을 연속적으로 연결시켜 도시 내부에 청량한 대기를 불러들일 수 있도록 계획해야 한다.
- ② 바람길에 놓이는 녹지에는 대기정화기능이 높고 생물적 다양성의 확보에 도움을 주는 낙엽활엽수 위주로 심어서 공간을 조성한다.
- ③ 외부로부터 오는 바람직하지 않은 바람(공장지대에서 불어오는 오염된 공기와 같이 오염된 공기를 동반하는 바람)은 차단하도록 한다.
- ④ 바람통로의 설치기준은 다음과 같다.
 - 가. 기후데이터를 활용한 바람장 분석을 통해 지역 여건을 고려한 바람통로를 선정한다.
 - 나. 신선한 공기를 공급하는 녹지, 바람통로를 보전해야 하는 녹지, 바람통로를 개선해야 하는 녹지로 구분하여 바람의 흐름이 원활하도록 한다.
 - 다. 수립된 계획에 따라 녹지나 시설물을 이용하여 바람의 방향이나 속도를 조절한다.
 - 라. 바람의 통로를 가로막는 방향의 건축물은 배제하고 바람의 방향과 나란히 조성한다.
 - 마. 바람을 통한 미기후를 형성하기 위해서는 고층아파트를 중심부에 두고 가장자리에 중층과 저층 주거단지를 배치하는 것이 바람직하다.
 - 바. 도시의 주 풍향을 고려하여 단지 및 건물을 배치하고 공원녹지체계와 연계하여 바람길 과 저온 냉대지역을 확보하여 도심의 열섬현상을 완화하도록 한다.

2.3.8 생물서식처 조성계획

- (1) 생물 서식공간 조성 시에는 입지조건(당해 장소에 맞는 소생물권(bio-top), 계절조건(공사 시기), 자연식생(당해 단지 내에 자생하는 식생)과 같은 인자들을 고려한다.
- (2) 환경친화적 단지조성을 위해 보전(conservation), 개선(improvement), 복원(restoration), 대체(trade-off)와 같은 방법을 적용하여 생물서식공간을 조성한다.

2.3.9 청정환경 조성계획

(1) 대체에너지 활용계획

기존의 화석연료에 대한 대체에너지로 태양열, 풍력, 수력, 바이오매스와 같은 에너지를 활용하도록 한다.

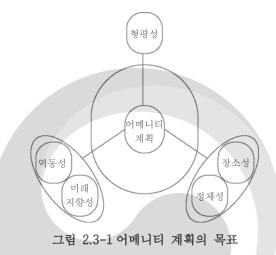
- ① 태양에너지
 - 가. 태양에너지를 활용하는 방안으로 액티브솔라시스템과 패시브솔라시스템이 있으며, 액티브솔라시스템은 태양광발전시스템과 설비형 태양열이용시스템으로 나뉜다. 설 계 대상지의 여건에 따라 적절한 시스템을 선정한다.
 - 나. 4시간 이상의 일조시간이 확보되는 공간에 배치한다.
 - 다. 집열판, 축열탱크와 같은 태양에너지 집열 및 저장시설을 배치할 장소를 확보하여야 한다
 - 라. 난방용, 온수 급탕용으로 이용한다.
- ② 풍력에너지
 - 가. 풍력발전은 무공해, 무한정의 바람을 이용하므로 환경에 미치는 영향이 거의 없다.
 - 나. 풍력발전은 공기 유동이 가진 운동에너지의 공기역학적 특성을 이용하여 회전자를 회전시켜 기계적 에너지로 변환시키고 이 기계적 에너지로 전기를 얻는 기술이다.
 - 다. 연가 평균 풍속이 매초 4 m 이상 되는 곳에서 풍력발전시스템의 활용이 가능하다.
- ③수력에너지
 - 가. 수력발전은 하천이나 호소와 같은 곳에서 물이 갖는 위치에너지를 수차를 이용하여 기계에너지로 변화하여 전기에너지로 변화하는 발전방식이다.
 - 나. 수력발전의 방식은 수로식, 댐식, 댐수로식, 유역변경식, 소수력발전, 양수발전의 방법이 있다.
 - 다. 생태계에 부정적인 영향을 미치는 댐식 발전은 지양하고 지역여건에 따라 환경친화적 인 소수력발전이나 수로식 발전을 고려한다.
- ④ 바이오매스
 - 가. 바이오매스는 생물자원을 에너지로 전환하는 방식으로 환경친화적 단지에 적극적으로 도입할만한 방식이다.
 - 나. 단지 내 음식물쓰레기나 동물배설물과 같은 바이오매스를 썩히어 메탄가스와 바이오 연료로 변환하여 사용하는 방안을 모색한다.

- (2) 쓰레기처리 및 폐기물 재활용
 - ① 쓰레기 처리 및 재활용은 매립이나 소각 처리해야 할 쓰레기의 양을 줄여준다.
 - ② 분리수거에 대응할 수 있도록 쓰레기 보관장소를 확보한다.
 - ③ 쓰레기 종류에 따라 재활용이 되지 않는 것도 있으므로 비바람을 피할 수 있도록 한다.
 - ④ 위생이나 악취, 미관상의 배려도 고려한다.
 - ⑤ 출입구에 가깝고 사람의 눈에 잘 띄는 곳이어야 한다.
 - ⑥ 단지 내 미관 증진 및 신속한 쓰레기 수거운반시스템을 구축하기 위해서는 쓰레기 자동집 하시설의 설치를 고려한다.
 - ⑦ 폐기물 재활용을 위한 고려사항은 다음과 같다.
 - 가. 과도한 토양 굴삭과 건설폐기물의 매립을 방지한다.
 - 나. 건설잔토와 폐기물 처리장과 공원의 일체적 정비를 고려하여 도시공간을 정비한다.
 - 다. 업무용 건물과 같은 곳에서는 도시 배출열 이용시스템을 보급하고 중수도의 이용을 추 진한다.
 - 라. 건설과정에서 폐기물의 발생을 최소화한다.
 - 마. 재생 가능한 건축소재를 사용한다.
 - 바. 재활용 가능한 건축소재 및 부품의 사용을 적극적으로 권장한다.
 - 사. 유기물의 퇴비화 설비를 설치하여 활용한다.

(3) 정온환경 조성

- ①소음진동 저감을 위해서 단지 내 도로는 차량이 서행하도록 해야 한다.
- ②소음원과 주거동 사이에는 소음이 감소할 수 있도록 하며, 주거동은 주 소음원과 직각으로 배치한다.
- ③소음원으로부터 50 m 이격시켜 배치하거나 방음벽, 최소 10 m 이상의 수림대와 같은 방음 시설을 설치하여 소음도가 65 dB 미만이 되도록 한다.
- ④속도방지 턱을 설치하거나, 소음감소 효과가 있는 포장재를 설치한다.
- ⑤ 생활가로는 곡선형으로 하고 가로시설물 도입을 통해 소음감소 방안을 마련하도록 한다.

2.3.10. 어메니티 계획


(1) 고려사항

- ① 어메니티는 인간과 환경의 교감에서 쾌적함, 즐거움, 긍정적인 감흥을 불러일으키는 장소의 속성이나 인간의 심미적 상태를 지칭하는 복합적인 개념으로서, 생태적 건강성과 문화적 향토성을 포괄한다.
- ② 주거환경의 어메니티는 거주자들이 거주하기에 기분 좋은 충체적인 주거환경의 질이다.
- ③어메니티는 주관적인 만족감이며, 총량으로 거주자의 만족도를 측정하여 정량화한다.
- ④ 어메니티는 어떤 장소나 건물이 생활의 즐거움을 주는 것이다. 인간과 환경의 관계에서 매력적이고 활기 있는 공간을 형성하는 물리적 환경상태가 중요하다.

- ⑤ 어메니티는 문화환경의 충족감과 함께 쾌적한 자연의 순수함이 가장 관계가 높다.
- ⑥ 어메니티는 한 사회의 경제·정치·사회의 발전수준과 사회구성원들의 가치관과 관습에 따라 변화할 수 있다.
- ⑦주거환경의 어메니티는 이용자들의 소득향상과 문화적 욕구 증대에 따라서 양적·질적으로 증대한다.

(2) 어메니티 계획의 목표 설정

- ① 대상지와 대상지 주변의 어메니티 자원을 도출한다.
- ②대상지의 장소성 및 정체성을 구현하고, 역동성 및 미래지향성을 고취시킬 수 있는 계획을 한다.

③대상지와 주변에 분포하는 자원을 최대한 활용하여 자원 활용의 형평성을 고려하도록 한다.

3. 재료

3.1 일반사항

- (1) 환경친화 주거단지에 사용되는 재료는 폐기물 발생이 적고 전과정평가(LCA)를 고려하여 환경 부담이 적은 재료를 선정한다.
- (2) 단지개발 시 현장에서 채취 가능한 발파석이나 표토와 같은 발생자재를 재활용한다.
- (3) 식물 소재의 경우 해당 지역에서 쉽게 구할 수 있는 향토 소재나 자생식물로 하고, 동물을 고려하여 식이식물이나 밀원식물과 같은 재료를 사용한다.
- (4) 기존 수목이 보전가치가 있을 때는 수목 주변을 보전하거나 이식하여 사용한다.

4. 설계

4.1 생태적 토지 동선설계

4.1.1 보행자 전용도로

- (1) 일반사항
 - ① 차량통행으로 인하여 보행에 지장이 예상되는 지역에 설치한다.
 - ② 보행의 쾌적성을 위해 녹지체계와 연관성을 고려한다.
 - ③ 보행과 대중교통시설이 체계적으로 연결되도록 한다.

(2) 공간조성기준

- ① 일반원칙
 - 가. 보행자전용도로는 주변 여건을 고려하여 도심형, 주거형, 녹도형으로 구분한다.
 - 나. 보행자전용도로 내에 자전거도로를 설치하여 보행과 자전거 통행을 병행할 수 있도록 한다.
 - 다. 일반도로와 평면 교차하는 결절점 주변에는 소광장과 같은 공간을 조성한다.
 - 라. 보행자 편의시설과 녹지와 같은 요소는 교차점이나 보행결집지에 설치한다.
 - 마. 보행자 전용도로가 건축물의 진·출입로로 인해 단절된 경우 보행 안정성 제고를 위해 험프식 횡단보도와 같은 안전시설을 설치해 준다.
- ②도심형 보행자 전용도로
 - 가. 폭원은 6 m 이상으로 하는 것이 좋으며, 현장여건을 감안하여 결정한다.
 - 나, 선형은 직선 또는 곡선으로 구성한다.
 - 다. 유동 활동이 많으므로 시설물을 과다하게 설치하지 않는다.
 - 라. 보행 집결지와 연접하여 있을 때는 소규모 광장을 두어 혼잡을 방지한다.
- ③ 주거형 보행자 전용도로
 - 가. 중심지의 보행자 전용도로에서 주거지로 연결되는 도로로 폭은 3~6 m로 하는 것이 좋으며, 현장여건을 감안하여 결정한다.
 - 나. 선형은 직선으로 하나 공간적 변화를 위하여 부분적으로 곡선형으로 설치한다.
 - 다. 보행로에 자동차의 주정차를 못하도록 진입부에 볼라드와 같은 진입차단 시설을 설치한다.
- ④ 녹도형 보행자 전용도로
 - 가. 폭은 3 m 이상으로 하는 것이 좋으며, 자전거 이용을 고려할 경우 전체 폭이 6 m 이상이 좋으며, 현장여건을 감안하여 결정한다.
 - 나. 선형은 부정형의 자연스러운 곡선으로 하고 폭원의 넓고 좁음을 이용하여 다양한 분위기를 조성할 수 있도록 한다.
 - 다. 공간구성은 주변 오픈스페이스와 서로 유기적으로 연결되어 일체화되도록 한다.
 - 라. 계단을 설치할 때는 경사로를 병행하여 설치하는 것이 좋으며, 현장여건을 감안하여 결정한다.

4.1.2 자전거 전용도로

(1) 설계원칙

- ① 자전거도로는 자전거도로 시설기준 및 관리지침에 따라 자전거이용자가 안전하고 편리하게 통행할 수 있도록 설치해야 한다.
- ②자전거도로의 횡단구성은 자전거도로의 유형, 도로의 기능, 교통량, 설치장소, 인접 차로의 제한속도와 같은 요소들에 따라 달라질 수 있다.

(2) 설계기준

자전거도로는 아래와 같은 기준에 따라 계획한다.

- ① 자전거도로의 설계속도는 자전거전용도로 30 km/h 이상, 자전거보행자겸도로 20 km/h 이상으로 한다.
- ② 자전거도로는 설계속도에 따라 오르막과 내리막 구간에 정지시거를 고려해야 한다.
- ③ 자전거도로의 곡선부에는 설계속도, 자전거가 기울어지는 각과 같은 자전거의 특성을 고려하여 곡선반지름을 확보해야 한다.

(3) 자전거전용도로

자전거전용도로는 아래와 같은 기준에 따라 설치한다.

- ① 자전거전용도로는 자전거만이 통행할 수 있도록 분리대 · 연석 기타 이와 유사한 시설물에 의하여 차도 및 보도와 구분하여 설치된 자전거도로를 말하며, 자전거 이용시설 설치 및 관리지침(국토교통부)에 따라 설치해야 한다.
- ②도시지역 자전거전용도로 폭은 한 방향 1.5 m(양방향 2.4 m)로 한다.
- ③지방지역 자전거전용도로 폭은 한 방향 1.5 m(양방향 3.0 m)로 한다.
- ④ 공원, 하천, 둔치와 같은 공간에 독립적으로 자전거전용도로 설치 시 폭은 한 방향 1.5 m(양 방향 3.0 m)로 한다.
- ⑤차도에 인접하여 자전거전용도로 한 방향 설계 시 폭은 1.5 m로 하고 그 도로의 제한속도에 따라 분리대를 설치한다.

4.1.3 녹도

(1) 녹도의 구조

- ①보행녹도의 폭은 6 m 이상의 폭원을 확보하며 수목식재 및 휴게공간을 설치하는 것이 좋으며, 현장여건을 감안하여 결정한다.
- ② 가로수는 가급적 2열 식재를 하되, 녹도의 폭이나 주변 여건에 따라서 열을 추가하거나 줄일 수 있다.
- ③ 수목의 지하고는 2.5 m 이상이 되도록 한다.
- ④보행로는 2인 통행을 기준으로 하여 최소한 1.5 m 이상 확보하며 대체로 3 m 정도는 확보한다.
- ⑤녹도의 기울기는 종단기울기 8%, 횡단기울기 1~2%를 표준으로 한다.

(2) 녹도의 형태

- ① 자유롭고 아름다운 곡선으로 설계하며, 자연스러운 분위기를 연출한다.
- ② 자전거 통행을 고려하여 안전시거를 확보한다.
- ③ 주변 지형과 일치될 수 있도록 도로의 형태를 결정한다.
- ④ 굴곡, 광장과 같이 시각적 변화나 초점을 형성한다.

(3) 녹도의 식재

- ① 향토수종을 심고, 기존 수목을 최대한 활용한다.
- ② 식생구조는 지피, 관목, 교목을 다층형으로 심는다.
- ③ 자연적 수형과 크기를 가진 수종을 심어 친근감 및 쾌적성을 제공한다.

4.2 생태순환계획

4.2.1 물순환체계 구축

(1) 자연배수체계

- ① 단지 내 유출수가 지표면의 낮은 지형을 따라 자연스럽게 흘러 갈 수 있도록 일정한 기울기를 유지한다.
- ②단지 내 유출수가 지표면을 따라 흐르다가 일정 지역에 저류되기 위한 시설을 도입해 주고 표면 유출수가 지하 토양층에 침투될 수 있도록 고려한다.

(2) 우수순환체계

- ① 우수가 단지 내에서 재활용될 수 있도록 필터(filter)장치 및 저장장치와 같은 기반시설을 설치한다.
- ②건물 동 사이의 녹지는 자연 우수저류지 역할을 할 수 있도록 조성하여, 유입된 빗물이 일시 저류되었다가 천천히 땅속으로 스며들 수 있도록 한다.
- ③ 단지별 우수유출을 줄이기 위해서 단지 외곽부에 수림대를 조성해 준다.
- ④ 소규모 단지에서 발생하는 빗물은 잔디 및 조경수와 같은 관수용수 및 소방용수로 활용하도록 한다.
- ⑤ 학교 운동장과 같이 넓은 면적을 가진 시설지에는 침투트렌치 및 우수저류탱크를 설치하여 우수를 재활용할 수 있도록 한다. 단지 내 연못은 상시 저류지로 활용할 수 있도록 하며 연못 사이에는 잔디도랑을 설치한다.

(3) 우수저류녹지

우수저류녹지는 일시 저류 녹지와 상시 저류 녹지로 분류되며 부정형의 연못 형태로 설계한다.

① 상시저류 녹지

- 가. 상시저류 녹지의 수심은 평상시의 경우 0.9 m를 유지해 주도록 하고, 바닥면은 물이 침투되지 않고 상시 저류가 되도록 한다.
- 나. 상시 수심을 제외한 부분은 빗물이 침투되도록 설계한다(1 m 이하가 가장 적정 : 모기 발생일수 및 침투속도를 고려).

KDS 34 70 55: 2016

②일시저류 녹지

- 가. 단지 내 초등학교 운동장은 빗물이 일시 저류되도록 계획하고 운동장 외곽부로 침투트 렌치를 설치하여 침투기능을 향상시키도록 한다.
- 나. 상시에는 운동장으로 활용하도록 하고 강우 시 일시 저류 녹지로 활용함으로써 다목적 이용효과를 가지도록 한다.

(4) 물순환 관련 도입시스템

물 순환과 관련하여 아래와 같은 시스템을 도입한다.

- ① 침투측구: 측구측면을 쇄석으로 채워 집수한 빗물을 땅속에 분산 침투시켜 주도록 설계 한다.
- ② 도로용 멀티측구: 차량에 의해 금속덮개가 튀어 올라 도로변 행인에 상해를 입히지 않도록 하며, 도로지형이나 장소에 맞게 변형 가능한 다용도 구조로 설계한다.
- ③ 침전조: 빗물에 포함된 분진, 모래와 같은 입자들을 침적시켜주고 빗물에 포함된 유기물과 다양한 유형의 오염물질들을 정화시켜 줄 수 있도록 설계한다.
- ④ 침투유입구: 밑면을 쇄석으로 채우고 빗물을 땅속으로 분산 침투시킬 수 있도록 설계한다.
- ⑤ 침투트렌치: 강우 시 저류된 물이 주변토양으로 침투되도록 하고 유입수로 부터 오염물을 효과적으로 조절할 수 있도록 설계한다.
- ⑥ 침투도랑: 굴착한 도랑에 모래 또는 자갈을 채우고 그 중간 중간에 침투유입구와 투수관을 설치하여 유입된 물을 쇄석의 측면과 밑면에서 땅속으로 분산 침투시켜주도록 설계한다.

4.3 생물서식처 조성계획

4.3.1 생물서식처 조성 지침

- (1) 대상 지역의 본래의 자연환경, 소재, 문화를 고려한다.
- (2) 훼손되기 이전의 생물 서식공간의 규모와 기능을 회복하도록 한다.
- (3) 다양성을 중시하고 네트워크 잠재력을 조사하고 구축한다.
- (4) 보호대상 생물종의 서식지와 그 주변을 보전, 관리한다.
- (5) 개발에 대응하는 생물 서식공간 보전과 조성 대안의 탐색은 단계적으로 수립한다.
- (6) 단지 내 생물서식처를 조성하기 위해서는 단지 상호간의 연결성을 고려해 준다.
- (7) 녹색건축물 인증을 위하여 소생물권(bio-tope)을 조성할 때는 녹색건축 인증 기준 제3조를 따른다.

4.3.2 생물서식처의 복원

- (1) 동물의 서식처 복원
 - ① 동물의 서식환경을 구성하기 위해서는 다양성, 연속성, 패치, 크기, 섬, 주연부, 이동로, 은신처, 먹이, 완충지, 물의 관점에서 고려해야 한다.
 - ② 연속성은 야생동물의 밀도와 분포를 결정짓는 기본원리로서 각 공간 간에 연결되는 고리와 축이 필요하며, 물리적 연속성을 유지하도록 한다.
 - ③ 패치는 동물의 적정수용력을 파악하여 먹이를 구하거나 은신처로 이용되는 식생군집의 적절한 규모와 형태를 결정한다. 패치를 고려할 때는 개체군 수준에서 다루도록 한다.
 - ④ 동일한 면적을 하나의 패치로 나누어 구성하는 것이 바람직하며, 지나치게 작은 규모의 패치로 나누게 되면 은신처로서의 기능을 상실하게 된다.
 - ⑤ 크기는 지형, 기후, 토양, 배수와 같은 인자들이 야생동물의 수를 결정하는 생태적 수용능력의 지표이므로 서식처를 획일적인 크기로 조성하지 않도록 한다.
 - ⑥물은 동물의 먹이, 번식지의 제공, 도피, 피난처, 휴식처와 같은 서식기능을 제공하므로 반드시 반영하다.
 - ⑦동물 서식공간 보호 및 이동을 위해 생태통로를 설치해 주며, 이 기준 KDS 34 70 40의 관련 기준을 따른다.

(2) 곤충의 서식처 복원

- ① 곤충서식처는 산림이나 숲 가장자리의 추이대 지역의 햇볕이 잘 드는 곳을 선정 한다.
- ② 적당한 크기의 습지와 상당히 넓은 면적의 초지, 덤불이나 조그만 숲을 조성할 수 있는 공간이 확보되어야 한다.
- ③ 관목과 교목의 식재가 가능해야 하며, 적당한 마운딩 처리가 가능한 장소이어야 한다.
- ④습지의 크기는 50 m² 이상이면 적당하고, 가까운 곳에 다른 습지나 수변공간이 있으면 좋다.
- ⑤ 주변에 산림이나 대규모 녹지공간과 같은 공간이 있으면 종의 공급원 역할을 하므로 다양한 곤충류를 유인할 수 있다.

4.4 어메니티 자원의 보전 및 활용

4.4.1 어메니티 자원의 발굴

어메니티 계획의 목표에서 제시한 지역의 장소성과 정체성을 파악하려면 그 지역의 고유한 특성을 파악해야 한다.

4.4.2 어메니티 자원의 활용

어메니티 자원을 바탕으로 한 권역분류 및 권역별 어메니티 계획을 수립하고 발굴된 자원을 바탕으로 유기적으로 연결할 수 있도록 계획한다.

KDS 34 70 55 : 2016

4.4.3 어메니티 자원의 창출

- (1) 어메니티 자원을 활용한 공간 및 프로그램 개발 시 공간요소는 대상 지역의 지표 및 계획요소 개발, 계획지침과 같은 공간적 계획에 관한 내용을 포함하고 프로그램 요소는 주민 참여의 절 차 및 재정 확보 방안을 고려한다.
- (2) 지역별 특성을 강화할 수 있는 어메니티 요소를 적극적으로 발굴 육성할 수 있는 기법을 개발 하고 이에 대한 지원 방안을 모색한다.

4.5 성능 적용 설계

요구 성능을 설정하고 성능평가 및 항목별 성능 기준을 고려한다.

4.5.1 일반적인 요구성능

- (1) 요구성능 1: 환경친화적 토지이용·교통·정보통신망을 구축한다.
- (2) 요구성능 2: 주거단지가 자연과 공생하고 자연 생태계 속의 일부로 존재할 수 있도록 생태 및 녹지를 조성한다.
- (3) 요구성능 3: 물・바람을 적절하게 활용한다.
- (4) 요구성능 4: 에너지 절약적 토지이용구조를 모색한다.
- (5) 요구성능 5: 수질, 대기, 토양오염, 소음진동과 같은 환경과 폐기물을 관리한다.
- (6) 요구성능 6: 시각회랑을 확보하고 스카이라인을 조절하여 경관을 양호하게 유지하는 기법들을 도입하여 어메니티를 확보한다.

4.5.2 성능평가항목

- (1) 평가항목 1: 입지의 적절성
- (2) 평가항목 2: 단지 내의 기존 식생 및 자연지형, 수도 등의 변경 여부
- (3) 평가항목 3: 물질의 순환
- (4) 평가항목 4: Bio-top 조성 여부
- (5) 평가항목 5: 친환경적 재료 사용 여부
- (6) 평가항목 6: 향토소재, 자생식물의 사용률
- (7) 평가항목 7: 토사의 재활용률
- (8) 평가항목 8: 동·식물상

- (9) 평가항목 9: 도시 미기후 측정
- (10) 평가항목 10: 생태녹지축 조성
- (11) 평가항목 11: 공원녹지의 면적 및 녹지율
- (12) 평가항목 12: 유수지 및 저류지와의 연계
- (13) 평가항목 13: 주변 자연경관의 활용
- (!4) 평가항목 14: 접근성 있는 스카이라인
- (15) 평가항목 15: 에너지 및 자원절약의 효율성
- (16) 평가항목 16: 원형 녹지 및 보전적지 비율
- (17) 평가항목 17: 습도 측정
- (18) 평가항목 18: 생태적 연결성 및 생물다양성
- (19) 평가항목 19: 환경친화적 교육방안
- (20) 평가항목 20: 야생동물 서식처 조성
- (21) 평가항목 21: 녹지 네트워크 구축
- (22) 평가항목 22: 신재생에너지의 활용도
- (23) 평가항목 23: 지형변형 및 도랑 발생
- (24) 평가항목 24: 벽면녹화 및 옥상녹화 등의 건물녹화 여부
- (25) 평가항목 25: 바람길 확충
- (26) 평가항목 26: 쓰레기 재활용율
- (27) 평가항목 27: 소음 및 진동 측정
- (28) 평가항목 28: 거주자의 만족도 평가
- (29) 평가항목 29: 전문가 평가

KDS 34 70 55 : 2016

집필위원	분야	성명	소속	직급
	조경	이재욱	㈜천일	상무
	연구책임	이상석	서울시립대학교	교수
	총괄	유주은	강릉원주대학교	겸임교수
		박선영	서울시립대학교 도시과학대학원	

자문위원	분야	성명	소속
	조경	이민우	공주대학교

건설기준위원회	분야	성명	소속
	조경	변영철	한국수자원공사
		박유정	삼성물산
		신경준	㈜장원조경
		김영욱	㈜유신
		이재욱	(사)한국조경학회
		조윤호	중앙대학교
		이형숙	가천대학교
		진승범	이우환경디자인(주)
		박미애	
		최병순	㈜대창조경건설
		조성원	한국토지주택공사
		신지훈	단국대학교
		신경준	㈜장원조경

중앙건설기술심의위원회	성명	소속
	김계숙	㈜케이지엔지니어링
	이원아	모자익
	윤은주	한국토지주택공사
	변금옥	㈜도화엔지니어링
	채선엽	동부엔지니어링
	박유정	삼성물산
	김태연	㈜대우건설

국토교통부	성명	소속	직책
	김수상	국토교통부 녹색도시과	과장
	신재원	국토교통부 녹색도시과	사무관
	신현호	국토교통부 녹색도시과	사무관

설계기준

KDS 34 70 55 : 2016

환경친화적 단지조성

2016년 6월 30일 발행

국토교통부

관련단체 한국조경학회

06130 서울 강남구 역삼동 635-4 과학기술회관 신관 1007호

http://www.kila.or.kr/

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

☎ 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr