
KDS 34 70 46 : 2019

옥상녹화

2019년 7월 26일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중 복·상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 조경설계기준에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
조경설계기준	• 조경설계기준 제정	제정
		(1999)
조경설계기준	• 조경설계기준 제정	개정
모성될게기군	• 모성일세기군 세성	(2002)
ㅈ거 서게기 ᄌ	. 조건서게기즈 대저	개정
조경설계기준	• 조경설계기준 제정	(2007)
ㅈ거 서 게 기 ㅈ	• 조경석계기주 제정	개정
조경설계기준	• 조경설계기준 제정	(2013)
VDC 24 20 45 : 2016	(DS 34 30 45 : 2016 • 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	
KDS 34 30 43 · 2010		
VDC 24 70 46 : 2010	• KDS 34 70 46 옥상녹화 제정(입체녹화에서 분	개정
NDS 34 70 46 · 2019	KDS 34 70 46 : 2019 리)	

제 정: 2016년 6월 30일 개 정: 2019년 7월 26일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 녹색도시과

관련단체 : 한국조경학회 작성기관 : 한국조경학회

목 차

1.	일반사항	1
	1.1 목적	1
	1.2 적용범위	1
	1.3 참고기준	1
	1.3.1 관련 법규	1
	1.3.2 관련 기준	1
	1.4 용어의 정의	1
	1.5 기호의 정의	1
	1.6 설계고려사항	1
2.	조사 및 계획	1
	2.1 계획	1
	2.1.1 목표	1
	2.1.2 옥상녹화	2
3.	재료	2
	3.1 토양재	
	3.2 식물재	2
	3.3 방수ㆍ방근재	3
4.	설계	3
	4.1 일반사항	3
	4.2 옥상녹화	3
	4.2.1 방수·방근 ······	3
	4.2.2 보호층	4
	4.2.3 관수	4
	4.2.4 배수	4
	4.2.5 여과층	5
	4.2.6 토양층	

4.2.7	도입식물	•••••	5
4.2.8	전도방지	시설	 6

1. 일반사항

1.1 목적

(1) 이 기준은 건축물을 포함한 인공구조물의 옥상, 지붕 등에 녹지공간을 조성하여, 도시 미관개선· 도시 미기후 조절·빗물 일시 저류 및 생물 서식공간이 가능하게 함으로써, 자연 친화적 생활환경을 조성하는 것을 목적으로 한다.

1.2 적용범위

(1) 이 기준은 식물생육이 부적합한 불투수층의 구조물 위에 식물생육에 적합하도록 토양층을 형성하고, 그 위에 식물을 심는 옥상녹화 조경에 적용한다.

1.3 참고기준

1.3.1 관련 법규

내용 없음

1.3.2 관련기준

- KDS 34 30 15 인공지반식재기반
- KCS 41 40 14 옥상녹화방수공사
- 조경기준(국토교통부)
- 건축물 녹화 설계기준(국토교통부)

1.4 용어정의

• 옥상녹화와 관련된 용어 정의는 국토교통부에서 제정한 조경기준, 건축물 녹화 설계기준을 참조한다.

1.5 기호의 정의

내용없음

1.6 설계고려사항

- (1) 옥상구조물의 적재하중은 해당 건물의 적재하중의 기준을 따른다.
- (2) 옥상 조경 시 안전을 위하여, 이용면에서부터 1.2 m 이상 높이의 담장 또는 펜스를 설치하여 이용자가 떨어지지 않도록 하며, 수목지지대 등의 안전상 필요한 구조물을 설치해야 한다.

2. 조사 및 계획

2.1 계획

2.1.1 목표

(1) 옥상녹화를 통하여 미기후 조절·녹시율 증대·소생물권(bio-tope) 형성의 목표를 달성하도록 한다.

2.1.2 옥상녹화

(1) 옥상녹화 유형

①건축물의 구조적 특성, 현장에서 도입 가능한 식물종, 설계하중의 영향 및 식재 패턴과 기술 개발 동향을 고려할 때, 중량형 녹화·혼합형 녹화·경량형녹화로 분류한다.

② 중량형 녹화

가. 최소 20 cm 이상의 토양층 조성이 필요하며 기타 수반되는 하부 시스템 구성 요소를 포함하면 단위면적당 300 kgf/㎡ 이상의 고정하중이 요구된다.

나. 중량형 녹화 유형은 이용형 녹화유형으로도 불리며 주기적인 관수, 시비, 전정, 예초 등 집중적 관리를 통하여 지속해서 유지해야 한다.

③ 혼합형 녹화

가. 토양층 조성 등 하부 시스템의 설치에 따라 건물에 미치는 하중 부하는 단위면적당 200 kgf/㎡ 내외이다.

나. 토양층 조성뿐만 아니라 관수 및 영양 공급 면에서 요구 조건이 비교적 낮은 편이다. 다양성은 중 량형 녹화에 비해 제한적이다.

④ 경량형 녹화

가. 토양층 조성과 하부 시스템의 설치가 건물에 미치는 하중 부하는 단위면적당 120 kgf/㎡ 내외이다.

나. 일반적으로 이용 목적을 배제하고 최소의 자원과 비용으로 생태적 건물외피 조성을 추구한다.

3. 재료

3.1 토양재

(1) 재료는 KDS 34 70 45(3.1)을 따른다.

3.2 식물재

(1) 옥상에서 식물재료의 환경적성 요구도는 표 3.2-1의 기준 이상으로 한다.

표	3.2-1	인공지반용	식물재료의	환경	적성	요구도
---	-------	-------	-------	----	----	-----

환경	조건	조건 요구수종	
토심	토심부족	천근성수종	상
하중	경량하중 요구	비속성 수종, 소폭 성장 수종	상
미기후	바람, 추위, 복사열 심함	내풍성 수종	중
토양	양분 부족	생존력이 강한 수종	상
수분	습도 부족	내건성 수종	상
일광	매우 많음	강양수∼음수	_

(2) 기타 규정되지 않은 사항은 KDS 34 30 15(3.2.2)를 따른다.

3.3 방수·방근재

- (1) 건축 구조물의 지붕을 포함한 옥상 녹화시 녹화부는 항상 습기가 있고, 화학비료 및 방제 등의 식재 관리가 이루어지므로 미생물이나 화학물질에 영향을 받지 않는 옥상녹화 특유의 안전한 방수층과 식재 계획의 특성을 고려하여 장기적 내화학성을 갖는 소재를 사용한다.
- (2) 방수 및 방근층을 구성하는 재료는 식물에 위해적인 구성 성분을 포함해서는 안 된다. 특히 일반 건축물 상부의 방수층과 비교하여 수분과 접촉하게 되는 기간이 길어짐에 따라 식물의 생장에 영향을 미칠 수 있는 성분의 용탈이 발생하여서는 아니 된다.
- (3) 식물의 뿌리가 방수층을 훼손할 우려가 있는 경우, 구조체를 보호하기 위해 방수층 및 방근층은 내근성을 확보한 소재를 사용할 수 있다.
- (4) 기타 규정하지 않은 사항은 KCS 41 40 14(2.), 건축물 녹화 설계기준(II. PART1. 옥상녹화 2. 방수/방근층)을 참조한다.

4. 설계

4.1 일반사항

(1) 녹색건축물 인증을 위하여 소생물권(bio-tope)을 조성할 때는 KDS 34 70 45(4.1)을 따른다.

4.2 옥상녹화

4.2.1 방수·방근

- (1) 면적이 분할 구획된 옥상의 방수는 방수공학적 관점에서 총체적으로 방근 조치가 이루어져야 하며, 방근이 단지 식생으로 구성되는 부분에만 제한적으로 적용되어서는 안 된다.
- (2) 방근재의 접합부, 끝단부, 차단부, 지붕 관통부 및 이음매 등에서의 뿌리 침입을 방지하도록 설계 한다.
- (3) 기타 규정되지 않은 사항은 KCS 41 40 14(3. 시공), 건축물 녹화 설계기준(II. PART 1. 옥상녹화 2. 방수/방근층)을 참조한다.

4.2.2 보호충

(1) 방수층 및 방근층을 보호하는 방법은 크게 다음의 4가지 유형으로 구분한다. 사용하는 옥상녹화의 유형, 방수재 및 방근재의 종류에 따라 적절히 설계에 적용한다. (부직포형 보호층 / 패널형 보호층 / 배수층형 보호층 / 방근층형 보호층)

- (2) 기존 옥상녹화 조성 방법에서는 보편적으로 방수층 상부에 타설하는 누름 콘크리트 층을 보호층으로 사용하고 있으며, 누름 콘크리트 층만으로는 방근 효과를 기대할 수 없으므로 별도의 방근층을 두어야 한다.
- (3) 부직포형 보호층으로는 300 g/m^2 이상의 섬유를 사용하고, 콘크리트나 시멘트 방수로 보호층을 조성할 때는 추가로 발생하는 하중 및 균열 발생에 유의한다.

4.2.3 관수

- (1) 인공지반에 적용할 수 있는 관수의 종류는 일반 호스, 관수용 호스, 살수기와 같은 요소들이 있다.
- (2) 일반 호스는 수도꼭지나 QC밸브에 호스를 꽂아서 살포하는 방식이며, 관수용 호스는 압력으로 물을 분출시키는 지표관수와 점적관수, 살수기는 노출 고정식, 분무 입상 살수기, 회전살수기로 세분되며 대상지의 여건을 고려하여 선택한다.
- (3) 기타 규정되지 않은 사항은 KDS 34 30 15(4.1.6)를 따른다.

4.2.4 배수

- (1) 배수층은 재료군 및 재료의 종류에 따라 골재형, 패널형, 저수형, 매트형으로 구분한다.
- (2) 옥상의 면적과 layout을 고려하여 배수공을 설치한다. 식수대 벽체 길이 30 m 당 1개소 이상 설치하며, 플랜터, 데크 등 구조물로 인하여 배수가 원활하지 않을 때는 추가 반영한다.
- (3) 옥상면의 배수구배는 최저 1.3% 이상으로 하고 배수구 부분의 배수구배는 최저 2% 이상으로 설치한다.
- (4) 배수드레인은 드레인 캡이 지붕 슬래브 면보다 융기해 있는 것을 사용한다.
- (5) 배수는 스테인리스판 등의 소재에 구멍을 뚫은 타공판을 통한 배수와 화단 벽체 하부 배수구를 통한 배수로 구분·선정한다.
- (6) 타공판배수로를 통한 배수
- ① 녹지 내로 스며드는 물은 배수층 →배수로 →루프드레인(점검구) →(선홈통)을 통해서 건물 외부로 유출되도록 한다.
- ② 스테인리스 타공판(위가 뚫린 □자형, 폭20~30cm)내에 자갈을 채워 빗물의 유입이 원활하도록 하며, 녹화 가장자리에 배치한다.
- ③배수로와 루프드레인의 연결부에는 점검구를 설치하여 인공토양, 낙엽, 쓰레기 등의 유입으로 인한 배수관의 막힘을 방지한다.
- (7) 화단 벽체 하부 배수구를 통한 배수
- ①녹지 내로 스며드는 물은 배수층 →벽체하부 배수구 →루프드레인(점검구) →(선홈통)을 통해서

건물 외부로 유출되도록 한다.

②화단 벽체 하부에 배수구(각관, 아래가 뚫린 \square 자형 강판)를 설치하여 화단 하부의 배수판을 통과 한 물을 루프드레인으로 유도한다.

(8) 기타 규정되지 않은 사항은 건축물 녹화 설계기준(Ⅱ. 4. 배수층)을 참조한다.

4.2.5 여과충

- (1) 여과층은 일반적으로 부직포(200g/m)를 사용하며, 부직포에 뿌리가 통과하지 못하는 소재는 지양한다.
- (2) 기타 규정되지 않은 사항은 KDS 34 30 15(4.1.5)를 따른다.

4.2.6 토양충

- (1) 토양층은 표토층과 육성층으로 구성된다.
- (2) 표토층으로 사용 빈도가 높은 것으로 바크, 우드칩, 화산석, 화강풍화토(마사토) 등이 있으며, 표토의 특성, 마감 색상·질감을 고려하여 선정한다.
- (3) 육성층에 도입되는 토양은 자연토양과 인공토양으로 구분한다. 건축물의 허용하중 범위 내에서 자연토양, 인공토양, 혼합토양(자연토양+인공토양)을 도입하되, 식물 생육에 적합한 통기성·투수성·보수성·보비력을 갖추어야 한다.
- (4) 기타 규정되지 않은 사항은 KDS 34 30 15(4.1.7, 4.1.8, 4.1.9)를 따른다.

4.2.7 도입식물

- (1) 뿌리분의 높이가 식재 기반층 두께(토심)에 맞게 결정되어야 한다.
- (2) 점토나 유기질 토양에서 길러진 다년초는 옥상녹화에 적합하지 않다.
- (3) 경량형 녹화 조성을 위해 사용되는 식물은 생육 상태가 양호하고, 적정량의 질소 시비로 키워졌으며, 충분히 열악한 환경에 적응한 식물이어야 한다.
- (4) 온실에서 재배한 것을 직접 적용하는 것은 안 되며, 야생 다년초의 경우 자연산지에서 직접 채취한 것이 아닌, 재배 생산을 통해 출하한 것을 권장한다.
- (5) 식재 기반층의 두께가 얇을 때는 평평한 뿌리분 식물을 심는다.
- (6) 포트묘 식물, 용기묘 식물 그리고 평평한 뿌리분 식물의 재배 토양은 주로 무기질 재료로 구성되어야 하다.
- (7) 옥상녹화 조성 시 사용되는 뗏장은 부식질이 적거나 중간 정도인 사토(모래흙)에서 재배되어야 하며, 토끼풀 종류가 절대로 뗏장에 혼합되지 않아야 한다.
- (8) 식생 매트는 재배, 운송, 포설 및 사용 목적을 위해서 적합한 매트 기반구조로 형성된다. 식생 매트가 팽팽하게 당겨지는 대상지에서 매트 기반구조는 토목 섬유의 요구 조건에 적합해야 한다. 부직 포로 된 매트 기반은 토양에서 분리되어 들리지 않고 부직포를 투과하여 뿌리를 내리는 기능을 충족하여야 한다.
- (9) 식생 매트는 균일한 두께로 생산되어야 하며 들뜬 공간이 생기지 않게 포설할 수 있어야 하고, 매

우 건강하게 재배된 것이어야 한다.

(10) 식생 매트는 온실로부터 직송된 제품을 사용해서는 안 된다. 건강한 식물은 식물종에 맞게 형성된 지상부 줄기나 짧은 줄기 마디 길이를 통해 식별한다.

4.2.8 전도방지 시설

(1) 식물재료의 전도를 방지하기 위한 내용은 KDS 34 30 15(4.1.10)를 따른다.

옥상녹화 KDS 34 70 46 : 2019

집필위원

성 명	소 속	성 명	소 속
이재욱	㈜천일		

자문위원

성 명	소 속	성 명	소 속
전용준	한국토지주택공사		

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	박승자	평화엔지니어링(주)
구재동	한국건설기술연구원	박유정	삼성물산
김기현	한국건설기술연구원	변영철	한국수자원공사
김태송	한국건설기술연구원	신경준	㈜장원조경
김희석	한국건설기술연구원	양권열	삼성물산(주)
류상훈	한국건설기술연구원	전용준	한국토지주택공사
정상준	한국건설기술연구원	전우태	극동엔지니어링(주)
주영경	한국건설기술연구원	조성원	한국토지주택공사
최봉혁	한국건설기술연구원	조의섭	동부엔지니어링(주)
김이호	한국건설기술연구원	최병순	대창조경건설(주)
김재준	방림이엘씨(주)	최원만	(주)신화컨설팅
김형선	㈜무영CM	홍태식	㈜수프로
박노천	㈜세일종합기술공사		
박미애	서울특별시		

옥상녹화 KDS 34 70 46 : 2019

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김묘정	성균관대학교	정경아	㈜건 화
이형숙	경북대학교	배철호	한국환경공단
박승자	평화엔지니어링	오현제	한국건설기술연구원
김은숙	하우엔지니어링건축사사무소		

국토교통부

성 명	소 속	성 명	소 속
안정훈	국토교통부 기술기준과	안경호	국토교통부 녹색도시과
김광진	국토교통부 기술기준과	김광주	국토교통부 녹색도시과
이상영	국토교통부 기술기준과	송하연	국토교통부 녹색도시과

KDS 34 70 46: 2019

옥상녹화

2019년 7월 26일 개정

소관부서 국토교통부 녹색도시과

관련단체 한국조경학회

05116 서울특별시 광진구 광나루로56길 85 18층 13호

☎ 02-565-2055 E-mail:kila96@chol.com

http://www.kila.or.kr/

작성기관 한국조경학회

05116 서울특별시 광진구 광나루로56길 85 18층 13호

http://www.kila.or.kr/

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

http://www.kcsc.re.kr