KRCCS 67 65 10: 2018

농업생산기반시설 배수갑문 및 어도 공사

2018년 04월 24일 제정 http://www.kcsc.re.kr

건설기준 코드 제 · 개정에 따른 경과 조치

이 코드는 발간 시점부터 이미 시행 중에 있는 설계용역이나 건설공사에 대하여 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 코드 제ㆍ개정 연혁

- 이 시방서는 KRCCS 67 65 10 : 2018 으로 2018년 04월에 제정하였다.
- 이 시방서는 건설기준 코드체계 전환에 따라 현행 농어촌정비공사 전문시방서의 내용을 그대로 유지하고, 1:1 개편을 통하여 한국농어촌공사 전문시방서 코드로 통합 정비하였다.
- 현행 농어촌정비공사 전문시방서는 총 16장으로 구성되었으나, 기계 및 전기 전문시방서를 추가하였다.
- 이 시방서의 제·개정 주요사항은 다음과 같다.

건설기준	주요사항	제·개정 (년.월)
농어촌정비공사 전문시방서	• 2000년 농어촌정비공사 전문시방서 제정	제정 (2000. 12)
KRCCS 67 65 10 : 2018	 국토교통부 고시 제2013-640호의 "건설공사기준 코드체계"전환에 따른 건설기준을 코드로 정비 건설기술진흥법 제44조 및 제44조의 2에 의거하여 중앙건설심의위원회 심의 	제정 (2018. 04)

제 정: 2018년 04월 24일 개 정: 년 월 일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회 소관부서 : 농림축산식품부 농업기반과

관련단체(작성기관): 한국농어촌공사(한국농공학회)

목 차	1. 일반사항
• •	1.1 적용범위 1
	1.2 참고 기준1
	1.3 용어의 정의1
	1.4 제출물 1
	1.5 일반 사항 2
	1.6 공사 기간 중 유지 관리 2
	2. 자재 2
	2.1 시멘트 2
	2.2 물 3
	2.3 잔골재 3
	2.4 굵은골재 4
	2.5 어도용 돌망태 5
	2.6 기초 치환용 모래 5
	2.7 기타 5
	3. 시공 7
	3.1 터파기, 되메움 7
	3.2 모래 치환 8
	3.3 배수갑문 및 배수문의 시공 8
	3.4 가물막이댐13
	3.5 붙임 배수로

3.6 어도 -------------------------14

1. 일반사항

1.1 적용범위

이 기준은 간척 공사 중 배수갑문 또는 배수문, 통선문, 어도, 임시물막이, 취부배수로 및 부대공사에 적용한다.

1.2 참고 기준

1.2.1 관련 시방절

- ·KRCCS 67 10 10:2018 관리 및 행정
- · KRCCS 67 20 10:2018 흙깍기
- · KRCCS 67 20 20:2018 사토장·토취장
- · KRCCS 67 20 30:2018 흙막이공
- · KRCCS 67 35 00:2018 콘크리트 공사
- · KRCCS 67 35 05:2018 일반 콘크리트공
- · KCS 24 00 00:2018 교량공사

1.2.2 한국산업규격

- · KS D 3503 일반 구조용 압연 강재
- · KS F 2312 흙의 다짐 시험 방법
- ·KS F 2538 콘크리트 포장 및 구조용 신축 이음 채움재
- · KS F 4420 교량 지지용 탄성 받침
- · KS F 4424 교량 지지용 포트 받침
- · KS F 4910 건축용 실링재
- · KS L 5201 포틀랜드 시멘트
- ·KS M 3410 배수용 경질 폴리염화비닐 이음관
- ·KS M 3805 폴리염화비닐 지수판
- · BS 5212
- · JIS A 5758

1.3 용어의 정의

· 내용 없음

1.4 제출물

1.4.1 제품자료 및 견본

수급인은 "KRCCS 67 10 10:2018 관리 및 행정, 1-2-2 공무행정 및 제출물, 1.9 사급자재 관련서류"의 해당 요건에 따라 공사감독자가 지시하는 재료의 제품자료 및 견본을 제출해야 한다.

1.5 일반 사항

- (1) 배수갑문 또는 배수문에는 통선문, 저층배수시설, 어도 및 도로부 교량 등이 부설되는 경우 이들가 상호 연관성을 고려해야 한다.
- (2) 배수갑문 또는 배수문 가물막이 제내의 터파기를 완료한 후 기초상태에 대하여 측량 및 시험을 실시하고 그 상태에 대응하는 계획과 시공공정을 작성 공사감독자의 승인을 받아 공사에 착수해야 한다.
- (3) 연약지반의 굴착한 부위는 지속적으로 굴착비탈면의 안정 및 누수상황을 확인하여 필요한 경우는 적절한 대책을 강구해야 한다.
- (4) 배수갑문 또는 배수문공사(토목, 기계, 전기, 건축 등)는 방조제 끝막이 공정에 맞추어 해야 한다.
- (5) 수급인은 열응력 또는 건조수축에 의한 콘크리트 구조물의 균열방지대책을 포함한 콘크리트 치기 계획서를 제출하여 공사감독자의 승인을 받아 시공해야 한다.
- (6) 토목공사는 기계, 전기, 건축 공사가 적기에 이루어질 수 있도록 전체공정계획을 면밀히 수립 하여 공사감독자의 승인을 받아야 한다.
- (7) 가물막이 제내의 공사는 육상에서 이루어 질 수 있도록 적소에 배수시설계획을 수립하여 공사감독자의 승인을 받아야 하며, 외조위 변화상황을 면밀히 관측하여 비상시에 대처할 수 있게 해야 한다.

1.6 공사 기간 중 유지 관리

- (1) 배수갑문 또는 배수문 완공 후 준공시까지 기상여건 및 공사여건에 따라 배수갑문을 조작하기 위한 각종 기기조작 관리요원을 배치 운영해야 한다.
- (2) 유지관리요원은 공사감독자의 지시와 협의를 거쳐 내외수위 관리에 만전을 기해야 하며 관리 요령의 변경 및 보완이 필요할 시에는 공사감독자의 승인을 받은 후 시행할 수 있다.

2. 자재

2.1 시멘트

- (1) 배수갑문 또는 배수문에 사용하는 시멘트는 공사시방서에 별도로 정하지 않는 한 KS L 5201 의 조건에 부합하는 내황산염 시멘트(5종)를 사용해야 한다.
- (2) 수급인은 모든 시멘트의 취급 및 저장설비를 제공해야 하며, 모든 시멘트는 기후의 변화에 견디고, 수밀성이며, 적당히 밀폐된 시멘트 저장용으로만 사용되는 건물에 저장되어야 한다. 공

- 사 여건상 밀폐된 공간이 아닌 곳에 저장할 경우는 공사감독자의 승인을 받아야 한다.
- (3) 벌크(bulk) 상태로 운반하는 시멘트는 적절히 건설된 사일로(silo)에 저장해야 한다. 사일로는 대양광선을 차단할 수 있는 벽으로 설비되어야 하며, 각 시멘트 저장품은 검사 및 시험을 위해 쉽게 접근이 가능하도록 저장되어야 한다.
- (4) 저장된 시멘트는 공사감독자의 승인을 받아 반입된 순서에 따라 사용해야 하며, 어떠한 시멘트도 공사감독자의 승인 없이는 저장소로부터 반출할 수 없다.
- (5) 수급인은 다음과 같은 경우에 사용된 시멘트의 비용과 취급에 따른 모든 경비를 부담해야 한다.
 - ① 폐기된 콘크리트, 모르터, 그라우팅
 - ② 손상되고 결점이 있는 콘크리트 대체
 - ③ 수급인의 부주의로 공사감독자가 지시한 이상의 굴착으로 소요된 콘크리트
 - ④ 수급인의 작업편의를 도모하기 위해 시설구조를 확장하거나 건설설비를 하기 위해 사용된 콘크리트
 - ⑤ 부적당한 취급이나 저장으로 인한 불량 시멘트

2.2 물

- (1) 물은 기름, 산, 유기불순물, 혼탁물 등 콘크리트나 강재의 품질에 나쁜 영향을 미치는 물질을 유해량 이상 함유하지 않아야 한다.
- (2) 물은 KS F 4009 부석서2의 기준에 적합한 것을 표준으로 한다.
- (3) 물은 콘크리트의 응결경화, 강도의 발현, 체적변화, 워커빌리티 등의 품질에 나쁜 영향을 미치거나 강재를 녹슬게 하는 물질을 허용함유량 이상 포함하지 않아야 한다.
- (4) 해수는 강재를 부식시킬 우려가 있으므로 철근 콘크리트, 프리스트레스트 콘크리트, 강콘크리트 합성구조 및 철근이 배치된 무근 콘크리트에서는 혼합수로서 사용할 수 없다.

2.3 잔골재

- (1) 잔골재나 잔골재용 원석의 강도는 단단하고 강한 것이어야 한다.
- (2) 잔골재는 유해량 이상의 염분을 포함하지 않아야 하고, 진흙이나 유기 불순물 등의 유해물이 유해량 허용한도 이내야 한다.
- (3) 잔골재로 콘크리트용 잔골재는 KS F 2526, 부순 골재는 KS F 2527, 순환 잔골재는 KS F 2573, 고로 슬래그 잔골재는 KS F 2544 표준에 적합한 것을 사용한다. 단, 혼합하여 사용하는 경우에는 KS F 2526의 품질 규정에 적합하여야 한다.
- (4) 잔골재의 절대 건조 밀도는 0.0025g/mm3 이상의 값을 표준으로 한다.
- (5) 잔골재의 흡수율은 3.0 퍼센트 이하의 값을 표준으로 한다. 단, 고로 슬래그 잔골재의 흡수율은 3.5 퍼센트 이하의 값을 표준으로 한다.
- (6) 잔골재는 대소의 알갱이가 알맞게 혼합되어 있는 것으로서, 그 입도는 표 2.1의 범위를 표준으로 한다. 체가름 시험은 KS F 2502에 따른다.

⟨표 2.3-1⟩ 잔골재의 표준 입도

체의 호칭 치수	체를 통과한 것은	- 질량 백분율(%)
(mm)	천연 잔골재	부순모래
10	100	100
5	95~100	90~100
2.5	80~100	80~100
1.2	50~85	50~90
0.6	25~60	25~65
0.3	10~30	10~35
0.15	2~10	2~15

- (7) 표 2.5의 입도 범위 내의 잔골재를 사용하여야 하며, 입도가 이 범위를 벗어난 잔골재를 쓰는 경우에는 두 종류 이상의 잔골재를 혼합하여 입도를 조정해서 사용하여야 한다. 혼합 잔골재의 경우 천연골재의 입도규정에 준한다. 또한, 표 2.5에 표시된 연속된 두 개의 체 사이를 통과하는 양의 백분율이 45 퍼센트를 넘지 않아야 한다.
- (8) 잔골재의 조립률이 콘크리트 배합을 정할 때 가정한 잔골재의 조립률에 비하여 ±0.20 이상의 변화를 나타내었을 때는 배합을 변경하여야 한다. 공기연행 콘크리트를 사용할 경우에는 입 도변화의 허용값을 앞의 값보다 작게 규정하는 것이 좋다.
- (9) 공기량이 3퍼센트 이상이고, 단위 시멘트량이 250kg/m3 이상인 공기연행 콘크리트나 단위 시멘트량이 300kg/m3 이상인 콘크리트 또는 0.3mm체와 0.15mm체를 통과한 골재의 부족량을 양질의 광물질 분말로 보충한 콘크리트는 0.3mm체와 0.15mm체 통과 질량 백분율의 최소량을 각각 5퍼센트 및 0퍼센트로 감소시킬 수 있다.

2.4 굵은골재

- (1) 굵은 골재나 굵은 골재용 원석의 강도는 단단하고 강한 것이어야 한다.
- (2) 굵은 골재는 유해량 이상의 염분을 포함하지 말아야 하고, 진흙이나 유기 불순물 등의 유해물의 유해량 허용 한도 이내여야 한다.
- (3) 콘크리트용 굵은 골재는 KS F 2526, 부순 굵은 골재는 KS F 2527, 고로 슬래그 굵은 골재는 KS F 2544, 순환굵은골재는 KS F 2573의 규정에 적합한 굵은 골재를 사용하여야 한다. 다만, 흔합하여 사용하는 경우에는 KS F 2526의 품질규정에 적합하여야 한다.
- (4) 굵은 골재로서 사용할 자갈의 절대건조밀도는 0.0025 g/mm3 이상의 값을 표준으로 한다. 다만, 고로 슬래그 굵은 골재의 경우 A급, B급은 각각 0.0022 g/mm3 및 0.0024 g/mm3 이상을 표준으로 한다. 순환굵은골재의 경우는 0.0025 g/mm3 이상의 값을 표준으로 한다.
- (5) 순환굵은골재의 흡수율도 3.0 퍼센트 이하로 한다. 다만, 고로 슬래그 굵은 골재의 경우 A급 및 B급은 각각 4.0퍼센트 및 6.0퍼센트를 상한값으로 한다.
- (6) 굵은 골재는 대소의 알갱이가 알맞게 혼합되어 있는 것으로, 그 입도는 표 2.2의 범위를 표준으로 한다. 골재의 체가름 시험은 KS F 2502에 따른다.

⟨표 2.4-1⟩ 굵은 골재의 표준 입도

골	체의 호칭				처	를 통	과하는	것의 7	질량 밴	분율(%	6)			
재	치수(mm)													
번	체의	100	90	75	65	50	40	25	20	13	10	5	2.5	1.2
호	크기(mm)													
1	90~40	100	90~100		25~60		0~15		0~5					
2	65~40			100	90~100	35~70	0~15		0~5					
3	50~25				100	90~100	35~70	0~15		0~5				
357	50~5				100	95~100		35~70		10~30		0~5		
4	40~20					100	90~100	20~55	0~15		0~5			
457	40~5					100	95~100		35~70		10~30	0~5		
57	25~5						100	95~100		25~60		0~10	0~5	
67	20~5							100	90~100		20~55	0~10	0~5	
7	13~5								100	90~100	40~70	0~15	0~5	
8	10~2.5									100	85~100	10~30	0~10	0~5

2.5 어도용 돌망태

- (1) 어도에 사용되는 돌망태는 KS F 4601의 기준에 맞아야 하며 아연도 철선을 사용해야 한다.
- (2) 돌망태의 규격, 재질, 중량은 설계도 및 공사시방서에 따른다.

2.6 기초 치환용 모래

치환용 모래는 실트질 이하의 세립질을 10% 이상 함유해서는 안 되며 조립률은 설계도 및 공사시 방서에 따른다.

2.7 기타

2.7.1 지수판

(1) 각 구조물에 사용되는 지수판의 재질과 치수는 공사시방서 또는 도면에 표시된 대로하고 치수별 허용차와 품질은 표 10.2와 같다.

⟨표 2.7-1⟩ 치수별 허용차

나비(mm)	나비의 허용차 (%)	두께 (mm)	두께의 허용차	길이 (m)	길이의 허용차 (%)
100 ~ 150 150 ~ 200 250 이상	±3	3 이상 4 이상 5 이상	± 0.5mm ± 0.5mm ± 10 %	10 ~ 30	+ 3

주) 관련 규격 : KS M 3805

(2) 지수판의 표면에는 눈으로 보아 해로운 균열, 흠 등의 결점이 있어서는 안 되며 품질은 표 10.3 의 규격에 적합해야 한다.

2.7.2 엘라스틱 필러

엘라스틱 필러의 재질은 KS F 2538에 규정한 시험에 통과된 것으로서 외관검사는 공사감독자의

승인을 받아야 한다.

〈표 2.7-2〉 지수판

	시	품 질	
	인 장 강 도	120(11.77) 이상	
	신	250 이상	
	노 화 성	± 10	
	유	-30 이하	
	알	인장강도 변화율	± 20
내	칼 리 	신장률 변화율	± 20
약 품		무게 변화율	± 5
성		인장강도 변화율	± 10
(%)	역 수	신장률 변화율	± 10
	수	무게 변화율	± 2

2.7.3 매스틱 필러

- (1) 구조물의 이음(joint) 줄눈에 사용되는 매스틱 필러는 상온에서의 혼합 물질로 된 역청질 재료이어야 한다.
- (2) 이 필러는 콘크리트의 수축과 팽창에 견딜 수 있는 탄성물질이고, 강한 태양열에 노출되더라 도 품질이 변하거나 늘어지지 않은 정착성이 있는 열저항 물질이어야 하며, 공사감독자가 지 정하는 시험에 합격한 것이어야 한다.

2.7.4 배수공

배수공 또는 플랲밸브(flap valve)가 있는 배수공에 사용되는 재료는 경질 비닐 파이프로서 KS M 3501, KS M 3410의 규정에 따라야 하며, 파이프의 안과 밖의 표면은 매끈하고 흠이 없어야 한다.

2.7.5 폴리우레탄(Poly urethane)

이음 충전재로 사용되는 폴리우레탄은 콘크리트의 수축과 팽창에 견딜 수 있는 탄성 물질이어야 하며, 강한 태양열에 노출되더라도 품질이 변하거나 늘어나지 않은 정착성이 있는 열저항 물질이어야 하며 표 10.4의 조건을 만족하는 재료이어야 한다.

〈표 2.7-3〉 폴리우레탄

시험 항목	품 질	관련 규격
비 중 내 한 성 내 열 성	1.0 이상 (-) 15℃ 이내 (+) 70℃ 이상	KS F 4910
회 복 률 흡 수 율 신 율 내 구 성 인장접착강도	70% 이상 0.4% 이상 50% 이상 양호 7kgf/cm2 이상	BS 5212 KS F 4910 KS F 4910 KS F 4910 JIS A 5758

2.7.6 철재료

- (1) 철계단, 옹벽의 난간, 교량의 난간, 언주의 난간 및 수위탑 등은 스테인리스 강 및 특수 알루미 늄을 사용해야 한다.
- (2) 잡철물의 재료는 KS 규정에 따라야 한다.

2.7.7 교량 신축이음재

- (1) 교량 하부 슬래브 및 상부 슬래브, 보도부의 신축이음부에는 스테인리스 강판을 사용해야 한다.
- (2) 교량 상부 슬래브, 차도부의 신축이음철판은 KS D 3503에 규정된 SS41 이상이어야 한다.

2.7.8 교량 교좌장치

- (1) 교좌재료의 화학성분과 기계적 성질은 관련 KS 규격과 일치해야 한다.
- (2) 교량지지용 탄성받침은 KS F 4420에 따라 제조, 시험, 검사를 하고 공사감독자의 승인을 받아야 한다.
- (3) 교량지지용 포트받침은 KS F 4424에 따라 제조, 시험, 검사를 하고 공사감독자의 승인을 받아야 한다.

3. 시공

3.1 터파기, 되메움

- (1) 연약지반을 굴착한 부위는 지속적으로 비탈면 안정 및 누수상황을 확인하여 필요한 경우에 적절한 대책을 강구해야 한다.
- (2) 굴착 토사는 "KRCCS 67 20 20:2018 사토장·토취장"의 해당 요건에 따라 지정된 사토장에 버리고 유반 중에 흘리지 않도록 해야 한다.
- (3) 수중준설 및 터파기 작업시 여굴심은 계획면에 대하여 ±30cm로 하고 이 범위를 넘으면 공사 감독자의 지시에 따라 시정해야 한다.

- (4) 발파시에는 기초지반에 충격을 작게 하기 위하여 소발파를 하고 여굴에는 콘크리트채움을 해야 한다.
- (5) 계획면까지 암깎기 및 터파기를 시행하고 공사감독자의 터파기 검사 후 지질에 따라 지반 지지력 등을 검토해야 한다.
- (6) 구조물 되메움에서 한번에 펴고르는 흙의 두께는 30cm 이내로 하고, 다짐은 인력이나 래머다 집으로 하며 KS F 2312의 다짐시험에 의한 최대건조밀도의 95% 이상 되어야 한다.

3.2 모래 치환

- (1) 일부구역의 기초지반이 연약층일 때 치환용 모래는 지정된 장소에서 채취한 것을 사용해야 한다.
- (2) 치환모래는 운반 및 배송 도중에 새어 흘러나가지 않도록 해야 한다.
- (3) 모래의 채취, 투입 등의 방법은 공사감독자의 승인을 받아야 한다.
- (4) 치환모래 투입시는 심한 요철이 없도록 깔아야 한다.
- (5) 계획단면의 완성 후 공사감독자의 검측을 받아야 한다.

3.3 배수갑문 및 배수문의 시공

3.3.1 물받이(Apron)

- (1) 배수갑문 및 배수문 내외측(해측, 호측)에 설치하는 물받이의 단부 지수굽 (shear key) 부분의 암절은 여굴이 발생하지 않도록 연직으로 절취하고 암 표면과 콘크리트 접합이 잘 되도록 해야 한다.
- (2) 물받이와 기초상판의 접합부위는 지수가 잘 되고, 이완이 일어나지 않도록 시공해야 한다.
- (3) 설계도에 제시된 암층이 나타나지 않을 경우는 구조물 기초지반에서의 침투류를 고려하여 기초처리 방법을 충분히 검토하고 공사감독자의 확인 및 숭인을 받은 후 시공해야 한다.

3.3.2 기초상판(基礎床板)

- (1) 기초상판은 물받이와 동일한 방법으로 시공해야 하며, 물받이와 접속이 잘 되도록 시공해야 한다.
- (2) 기초상판 및 물받이의 신축이음부는 1겹 또는 2겹의 수축팽창 고무 지수판을 설치하여 누수 가 발생되지 않도록 해야 한다.
- (3) 기초암반의 표면은 바닥의 철근피복 소요두께가 일정하게 유지될 수 있도록 공사감독자의 지시에 따라 정리해야 하며, 발생된 여굴은 수급인의 책임하에 콘크리트로 채움을 해야 한다.
- (4) 기초상판과 구체의 주기둥이 연결되는 부분의 철근은 철근조립 후 공사감독자의 검사와 지시에 따라 콘크리트를 쳐야 한다.
- (5) 바닥 씰 플레이트(bottom seal plate) 설치부분의 2차 치기 무수측 콘크리트와 1차 콘크리트와 의 접촉부위는 쪼아낸 후 완전한 청결상태에서 접합이 잘 되도록 시공해야 하며, 관련되는 기계공사를 동시에 시공할 수 있도록 해야 한다.

3.3.3 구체(軀体)

- (1) 언주(堰柱)와 문주(門柱)
 - ① 구체부분 시공시 사전에 관련공사 기술자와 협의하여 관련되는 기계, 전기공사가 동시에 시공될 수 있도록 특히 유의해야 한다.
 - ② 언주의 수절원(水切圓)이 설계도와 동일하게 시공될 수 있도록 거푸집 설치 및 콘크리트 치기에 유의해야 한다.
 - ③ 트러니언(trunnion) 및 수력권양기(hydraulic hoist)와 접합되는 부분은 시공이음을 두어서는 안 되며, 이로 인한 응력상 결함이 생겨서도 안 된다.
 - ④ 교대와 교각 부분은 교량 슬래브와 지승고(支承高)를 감안한 종단 기울기에 맞도록 시공해야 한다.
 - ⑤ 언주는 독립기둥의 구조로 기초상판과 일체를 이루고 있으므로 연결부의 접합이 잘 되도록 시공해야 한다.
 - ⑥ 언주와 문주의 콘크리트 치기시 시공이음은 표면의 불순물이나 레이탄스를 완전히 제거한 후 습윤상태로 하여 다음 콘크리트 치기를 하며 각 언주의 시공이음은 수평이 되도록 해야 한다.
 - ⑦ 구체 시공방법, 규격 등은 설계도면 및 공사시방서에 따른다.

(2) 권양기대

- ① 권양기대의 권양기 밸브나 문비수리를 위한 앵커 설치위치의 철근은 기계공사와 관련되므로 충분히 검토하여 배근해야 한다.
- ② 권양기대는 기계, 전기, 건축공사와 관련되므로 사전에 관련 기술자와 충분한 협의를 하여 시공해야 한다.
- ③ 권양기대 슬래브 내의 권양기 로프 홀과 어도 문주 및 통선문 문주 속의 매설물은 문주응력 상 지장을 주지 않도록 공사감독자의 지시에 따라 설치해야 한다.

3.3.4 교량

- (1) 교량의 일반 시방은 도로교 표준시방서에 따른다.
- (2) 배수관은 콘크리트 치기 전에 미리 설치해야 한다.
- (3) 교량 슬래브의 콘크리트가 경화하기 전에 다음의 작업을 위하여 어떠한 하중이나 충격을 주어서는 안 된다.
- (4) 교량을 지지하는 교좌장치, 통과하중, 교명주 등은 공사시방서에 따른다.

3.3.5 통선문

- (1) 통선문을 설치할 때는 급 배수관의 연결부에서 누수가 발생하지 않도록 시공해야 한다.
- (2) 선박 진출입시 충격을 완화시키기 위한 방충재(방현재)는 공사감독자의 승인을 받아 설치하고 고정용 볼트 및 너트는 스테인리스강을 사용해야 한다.

3.3.6 옹벽

- (1) 배수갑문 양안에 설치되는 옹벽은 설계도와 같이 시공하며, 되메움 흙쌓기는 인력이나 래머 다짐으로 KS F 2312의 다짐시험에 의한 최대건조밀도의 95% 이상의 다짐률(도)을 갖도록 해야 하다.
- (2) 신축이음은 설계도에 표시된 위치에 다우웰바를 설치하고, 이음면에 지수판과 이음재료를 충전해야 한다.
- (3) 건조수축으로 인한 균열을 방지하기 위하여 V형의 수축이음을 두며, 철근을 잘라서는 안 된다.
- (4) 배수조 옹벽배면에 뒤채움 자갈을 채우고 배수가 잘 되도록 배수공을 설치해야 한다.

3.3.7 콘크리트 공사

- (1) 이 절에 규정한 사항을 제외한 배수갑문 콘크리트 공사(배수갑문, 배수문, 통선문, 어도, 저층 배수시설, 옹벽 등)는 "KRCCS 67 35 00:2018 콘크리트 공사"에 따르고, 교량은 "KCS 24 00 00:2018 교량공사" 규정을 준용한다.
- (2) 콘크리트가 소량이거나 공사감독자가 인정하는 경우를 제외하고는 배합은 자동계량이 가능한 배치 플랜트, 운반은 트럭 믹셔, 치기는 콘크리트 펌프 카, 다짐은 콘크리트 진동기로 시공해야 한다.
- (3) 거푸집, 동바리, 비계공은 철재를 사용하고, 공사감독자가 인정하는 경우는 예외로 하며, "제6 장 콘크리트 공사"에 따라 하중, 응력 등을 계산하여 설계도면을 작성, 공사감독자에게 제출 하여 승인을 받은 후 시공해야 한다.
- (4) 콘크리트 치기를 할 때는 기계, 전기, 건축 등 관련부분에 대해 충분한 협의를 하고, 매설물(지수판, 사다리용 철근, 다우웰바, 문비 가이드 실(gate guide sill), 매설기기 등)의 적정위치 및 설치시기는 공사감독자의 지시에 따라야 한다.
- (5) 콘크리트 치기는 1층의 두께를 40 ~ 50cm로 하여 수평으로 연속되게 치고 전층의 콘크리트가 아직 소성 상태에 있을 때 다음 층을 중첩시켜 치기를 하며, 진동기는 전층에 10cm 정도 들어 가도록 수직 삽입하고, 거푸집 제거 후 표면이 평활하게 될 수 있게 해야 한다.
- (6) 거푸집, 동바리, 비계공 등의 가설물은 충분한 강도를 갖는 것이어야 하며, 이로 인해 콘크리트 면이 좋지 않을 때 공사감독자는 재시공을 명령할 수 있다. 수급인은 공사감독자가 지적하는 부분을 즉시 제거하고 자부담으로 재시공하여 공사감독자의 확인을 받아야 한다.
- (7) 암반상의 콘크리트치기는 바닥청소와 배수상태에 대하여 공사감독자의 확인을 거친 후 시공해야 한다.
- (8) 콘크리트 치기는 반드시 공사감독자의 입회하에 해야 한다.
- (9) 콘크리트 시공이음은 신 구 콘크리트가 잘 부착되도록 이음부 표면에 활동방지벽(shear key) 역할을 할 수 있는 요철을 두며, 레이턴스 등의 이물질을 제거하고 물로 청소하여 습윤케 하고 모르터 처리를 한 후에 다음 콘크리트를 쳐야 한다.

3.3.8 철 공사

- (1) 철 구조물의 모든 부재는 설계도면에 따라 공장에서 제작해야 하며, 조립은 리벳이나 용접으로 해야 하고 설치일정 전에 현장에 운반되어야 한다.
- (2) 공장용접은 반드시 전기용접으로 해야 하며, 용접봉은 공사감독자가 인정하는 규정에 따라야 한다.
- (3) 현장용접에서 수급인은 용접공 선정, 용접방법과 사용할 기구의 명세를 제출하여 공사감독자 의 승인을 받아야 하며, 기온이 3℃ 이하일 경우는 용접을 할 수 없다.
- (4) 수급인은 설계도면과 공사감독자의 지시에 부합되게 도장하거나 잘 닦은 다음 타 구조물에 손상을 주지 않도록 구조물에 정착시켜야 한다.
- (5) 콘크리트 치기 전이나 2차 콘크리트 치기 전에 금속세공 설치가 불가능한 경우 수급인은 공사 감독자의 승인을 받아 콘크리트가 충분히 경화한 후 콘크리트 속에 홈을 만들 수 있으며, 콘크 리트 속에 철물을 부착시키는 경우는 콘크리트 치기 전에 녹, 기타 이물질을 완전히 제거해야 한다.
- (6) 콘크리트 속에 묻힐 부분은 오염, 기름, 제작공장에서 묻은 파쇄물, 녹 등이 없어야 하며, 설치 전 도장을 해서는 안 된다.
- (7) 모든 철재는 정확한 위치에 설치되어야 하며, 콘크리트 치기 중 위치의 변동이 발생되지 않도록 해야 한다.
- (8) 철재물을 정확한 위치에 설치하는데 필요한 모든 보조물, 앵거볼트 및 조정볼트 등의 배치는 콘크리트 치기 전에 거푸집과 철근간격을 감안하여 설계도면에 표시한 위치에 정착시키고 공사감독자의 검사를 받아야 한다.
- (9) 철재의 절단, 고정, 용접, 설치 등은 설계도면의 주의사항에 따라야 하고, 별도 주의 사항이 없는 철공사는 별도의 기계공사시방서에 준하며 공사감독자의 지시에 따른다.

3.3.9 에폭시(Epoxy) 도장공사

- (1) 철제도장은 별도의 기계공사시방서에 따른다.
- (2) 언주와 물이 접촉하는 부분의 콘크리트 부식을 방지하기 위한 에폭시(epoxy) 도장은 수급인 이 공사방법 등을 포함한 시공계획서를 작성하고 공사감독자에게 제출하여 승인을 받아야 한다.
- (3) 다음과 같은 경우, 도장공사를 해서는 안 된다.
 - ① 기온이 5℃ 이하일 때
 - ② 습도가 85% 이상일 때
 - ③ 도료가 경화건조되기 전에 비가 올 우려가 있을 때
 - ④ 강재의 표면에 습기가 있을 때
 - ⑤ 무더운 날씨로 인해 도장면에 기포가 생길 우려가 있을 때
 - ⑥ 중복되는 도장의 경우 전 도막의 건조가 불충분할 때
 - ⑦ 기타 공사감독자가 부적당하다고 인정할 때
- (4) 리벳이나 볼트로 연결되는 상호재료의 접촉면 및 강재와 콘크리트 접촉면은 특별한 경우를

제외하고는 도장을 해서는 안 된다.

- (5) 에폭시 도장을 할 철재면을 규사 모래, 스틸 그리트 샷(steel grit shot) 등으로 쏘아낸 후 고압 공기 분사나 진공펌프를 이용하여 먼지나 기타 잔여물을 깨끗이 제거해야 하며 작업완료 후 공사감독자의 검사를 받은 후 도장해야 한다.
- (6) 콘크리트 면에 도장할 경우 도장하기 전 30 ~ 60일간 완전하게 양생시킨 후 벌어진 틈새나 흠을 충전재를 사용하여 완전히 메꾸어 표면에 요철이 없도록 한다.
- (7) 콘크리트 표면에 형성된 레이턴스(laitance)등의 연약층을 제거하고 깨끗한 물로 세척하여 건조시켜야 하고 공사감독자의 검사를 받은 후 도장해야 한다.
- (8) 에폭시 도장 재료는 철재면, 콘크리트면으로 구분하고 설계도 및 공사시방서에 따른다.

3.3.10 잡공사

(1) 매설기기

① 배수갑문 또는 배수문 구체와 교량 등에 설치되는 매설기기는 공사감독자가 승인하는 기자 재를 정밀하게 시공해야 한다.

(2) 난간

- ① 알루미늄 압출합금 난간으로 차도용과 보도용으로 구분하여 부식에 대한 내식성 및 외부 충격으로부터 내구성이 있어야 한다.
- ② 난간 고정용 앵커볼트는 콘크리트와 일체가 되도록 설치해야 한다.
- ③ 난간은 콘크리트 구조물의 신축이음부에서 반드시 절단해야 한다.

(3) 교량 신축 이음

- ① 차도부 신축이음 설치위치를 정확하게 표시한 후 아스팔트 커터(cutter) 로 포장면을 절단 제거하고, 노출 철근이 손상되지 않도록 모래를 제거한 후 내부를 깨끗이 청소해야 한다.
- ② 셋트 설치 및 보강철근을 배로 하고 앵커 철근을 용접한 후 콘크리트를 쳐야 한다.
- ③ 셋트를 철거하고 콘크리트 치기면을 검사한 후 방수 씰런트(sealant)를 바른다.
- ④ 이음(joint)은 압축 또는 확장시켜 설치하고 바닥접착제가 고르게 펴진 것을 확인하면서 볼 트 너트를 완전히 조여야 한다.

(4) 교량 교좌 장치

- ① 탄성받침은 전단면에서 균등하게 지압을 받는 것으로 설계되어 있으므로 탄성 받침 상·하 부 간에는 간극이 생기는 일이 없게 해야 한다.
- ② 탄성받침을 설치할 때는 우선 도면상의 규격 및 치수를 확인한 후 종류에 따라 정확히 구분 설치해야 하며, 설치하기 전 탄성받침의 수평여부를 확인하고, 공사감독자의 승인 후에 무수축 모르터(B 600kgf/cm2)를 충전한다.
- ③ 포트받침을 설치할 때는 우선 도면상의 규격 및 치수를 확인한 후 종류에 따라 정확히 구분 설치해야 하며, 설치하기 전 포트받침의 수평여부를 확인하고 공사감독자의 승인 하에 무수축 모르터를 충전한다.
- ④ 모든 포트받침에는 명판을 설치하거나, 지워지지 않는 잉크나 페인트로 제조회사명 또는 그 약호를 교량이 가설된 후 잘 보이도록 포트받침 측면에 기록해야 한다.

3.4 가물막이댐

3.4.1 가물막이댐 쌓기

- (1) 쌓기공은 방조제 쌓기공과 동일한 방법으로 시공해야 하며, 쌓기재료의 유실을 적게 할 수 있도록 외측의 비탈면 보호사석을 조속히 시공해야 한다.
- (2) 방조제 사석제와 가물막이댐의 사석 부분이 접하는 부분은 흙쌓기로 시공하여 누수가 되지 않도록 해야 한다.
- (3) 수급인은 이상조위 및 파고가 발생할 경우를 대비한 안전조치를 강구하여 공사감독자의 승인을 받아야 한다.
- (4) 해측 비탈면 및 둑마루부는 설계파고에 견딜 수 있는 중량의 사석을 선별 시공해야 한다. 그리고 필터 매트(filter mat) 시공은 방조제와 동일한 방법으로 시공한다.
- (5) 도류제 부분에 시공되는 피복석은 방조제와 일체가 될 수 있도록 공사감독자의 지시에 따라 시공 및 마무리해야 한다.
- (6) 흙쌓기제의 다짐시험 방법은 방조제와 동일하게 해야 한다.
- (7) 도로로 이용되는 가물막이댐은 비탈면 및 기초지반의 안정도 검토 후 공사감독자의 승인을 받아 시공해야 한다.

3.4.2 가물막이댐 헐기

- (1) 가물막이댐 헐기는 방조제 공정에 맞추어야 하며, 그 시기와 방법은 공사감독자의 지시에 따라야 하고 굴착한 바닥부위는 붙임배수로 바닥표고와 같아야 한다.
- (2) 가물막이댐 헐기시 방조제 일부가 되는 부분은 이음부처리, 다짐상태 등을 공사감독자가 확인한 후 지시에 따라 방조제 단면으로 형성해야 한다.
- (3) 가물막이댐 헐기량은 방조제 쌓기에 유용되므로 사석과 흙쌓기재가 서로 혼입되지 않도록 해야 한다.
- (4) 도류제 부분의 비탈면 보호사석은 방조제와 일체가 될 수 있게 마무리해야 한다.

3.4.3 가물막이댐 유지관리

- (1) 수급인은 가물막이댐 단면이 원형대로 유지되고 있는지 여부를 수시로 점검해야 하며 유실위험 발생시 적절한 대책을 강구해야 한다.
- (2) 수급인은 가물막이댐 내에서 시공되는 토목, 기계, 전기, 건축 등 모든 공사를 육상 작업으로 시공이 되도록 침출수의 배수 등을 완벽히 유지 관리해야 한다.

3.5 붙임 배수로

3.5.1 깎기 및 터파기

(1) 토사와 암의 꺾기는 "KRCCS 67 20 10:2018 흙깍기, 3-2-1 흙깎기" 및 "3-2-3 암깎기"의 해

- 당 요건에 따르며 굴착된 암과 토사는 공사감독자가 정하는 위치로 유용해야 하고, 골재용으로 사용될 양질의 사석은 별도의 장소에 운반 저장해야 한다.
- (2) 구조물 기초부 굴착은 "KRCCS 67 20 10:2018, 3-2-2 터파기"의 해당 요건에 따르며, 계획표 고를 엄격히 지켜야 하고 과대한 굴착은 수급인 부담으로 콘크리트로 채움을 하고 공사감독 자의 확인을 받아야 한다. 추정된 지반의 지지력이 예상과 다른 경우, 수급인은 공사감독자의 확인 및 지시에 따라 보강해야 한다.
- (3) 발파작업은 구조물 콘크리트를 치기 전에 완료해야 하며 발파작업으로 인하여 방조제, 가물 막이댐 등의 안전을 위협하지 않도록 해야 하고 손상을 입혔을 경우 수급인 부담으로 이를 복구해야 한다.
- (4) 가물막이댐 내외측 간석지 흙을 굴착할 경우는 가물막이댐의 안전을 위하여 완속시공 등 적절한 시공계획을 수립하여 공사감독자의 승인을 받은 후 시공해야 한다.
- (5) 방조제공사에 유용되는 굴착된 풍화대와 풍화암 이상의 암은 공사감독자의 지시에 따라 운반 해야 하며, 간석지 흙은 지정된 사토장에 사토한 후 내부개답 등에 유용하고, 준설시에는 수류 장애가 발생하지 않도록 사토장소 부근 수역의 수류상태를 정기적으로 확인하여 적절한 조치를 해야 한다.

3.5.2 바닥보호공

- (1) 바닥 및 비탈면 보호공은 침식이 생기지 않도록 중량의 사석을 사용해야 하며, 특히 표면에 노출되는 사석은 물의 흐름에 대한 저항이 최소화 되도록 해야 한다.
- (2) 특히 물받이 끝부분과 바닥보호공 결합부위는 세굴이 일어나지 않도록 철저히 시공해야 한다.
- (3) 바닥보호공의 범위와 사석 크기 및 개당 중량 등은 수리모형실험 결과나 공사감독자의 지시에 따라 시공해야 한다.

3.6 어도

3.6.1 3계단식 및 수로식 어도

- (1) 격벽과 잠공 등의 규격은 설계도면과 맞게 정확하게 시공해야 한다.
- (2) 흠이 없고 외관이 보기 좋도록 콘크리트를 쳐야 한다.
- (3) 돌망태를 설치하는 어도의 경우는 "KRCCS 67 20 30:2018 흙막이공, 3-6-4 돌망태 옹벽"의 해당 요건에 따르며,철망에서 빠져 나올 수 있는 크기의 돌을 사용해서는 안 된다.
- (4) 어도기초의 모래채움은 물다짐을 하여 부등침하가 일어나지 않도록 해야 한다.

3.6.2 갑문식(통선문 겸용)

- (1) 통선문과 겸용으로 설치하므로 실(sill)과 바닥에 설치하는 급·배수관과 좌·우측 벽에 부착하는 방현재는 적정위치에 설치하고 부착용 볼트 너트는 스테인리스강을 사용해야 한다.
- (2) 급·배수관의 연결부 및 콘크리트로부터 노출되는 부분에서는 누수가 되지 않아야 한다.

- (3) 통선문의 갑실 중앙부에 설치되는 신축이음은 특히 유의하여 콘크리트 신축과 누수의 영향이 없도록 시공해야 한다.
- (4) 어도에 담수를 공급하는 양수기의 양수량 및 규모는 공사감독자와 사전 협의한 후 지시에 따라 성능을 충분히 발휘할 수 있도록 설치해야 하며 특히 어도 양수장의 흡입 및 배출 파이프 연결위치는 기전공사 기술자와 사전에 협의하여 공사감독자의 승인을 받아 철근 배근 전에 결정해야 한다.

집필위원	분야	성명	소속	직급
	관개배수	김선주	한국농공학회	교 수
	농업환경	박종화	한국농공학회	교수
	토질공학	유 찬	한국농공학회	교수
	구조재료	박찬기	한국농공학회	교수
	수자원정보	권형중	한국농공학회	책임연구원

자문위원	분야	성명	소속
	농촌계획	손재권	전북대학교
	수자원공학	윤광식	전남대학교
	지역계획	김기성	강원대학교
	수자원공학	노재경	충남대학교
	농지공학	최경숙	경북대학교
	관개배수	최진용	서울대학교

건설기준위원회	분야	성명	소속
	총괄	한준희	농림축산식품부
	농업 용 댐	오수 훈	한국농어촌공사
	농지관개	박재수	농림축산식품부
	농지배수	송창섭	충북대학교
	용 배수로	정민철	한국농어촌공사
	농도	조재홍	한국농어촌공사 본사
	개간	백원진	전남대학교
	농지관개	이현우	경북대학교
	농지배수	남상운	충남대학교
	취입보	김선주	건국대학교
	양배수장	정상옥	경북대학교
	경지정리	유 찬	경상대학교
	농업용관수로	박태선	한국농어촌공사 본사
	농업 용 댐	손재권	전북대학교
	농지배수	김정호	다산컨설턴트
	농지보전	박종화	충북대학교
	농업 용 댐	김성준	건국대학교
	해면간척	박찬기	공주대학교
	농업수질및환경	이희억	한국농어촌공사 본사
	취입보	박진현	한국농어촌공사 본사

중앙건설기술심의위원회	성명	소속
	이태옥	평화엔지니어링
	성배경	건설교통신기술협회
	김영환	한국시설안전공단
	김영근	건화
	조의섭	동부엔지니어링
	김영숙	국민대학교
	이상덕	아주대학교

농림축산식품부	성명	소속	직책
	한준희	농업기반과	과장
	박재수	농업기반과	서기관

전문시방서

KRCCS 67 65 10: 2018

농업생산기반시설 배수갑문 및 어도 공사

2018년 04월 24일 발행

농림축산식품부

관련단체 한국농어촌공사

58217 전라남도 나주시 그린로 20(빛가람동 358) 한국농어촌공사

☎ 061-338-5114 E-mail: webmaster@ekr.or.kr

http://www.ekr.or.kr

(작성기관) 한국농공학회

06130 서울시 강남구 테헤란로 7길 22(역삼동 365-4) 과학기술회관 본관 205호

http://www.ksae.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

☎ 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr

※ 이 책의 내용을 무단전재하거나 복제할 경우 저작권법의 규제를 받게 됩니다.