상수도 계측공사일반사항

2017년 8월 일 제정

http://www.kcsc.re.kr

목 차

K	CS 57	95 05	상수도	계측공사	일반사항	 	 · 1
1.	일반시	나항 …				 	 · 1
2.	자재					 	 · 4
3.	시공					 	 . 4

KCS 57 95 05 상수도 계측공사 일반사항

1. 일반사항

1.1 적용범위

- (1) 이 시방서는 상수도공사의 시공에 있어 계측제어공사와 관련된 감시제어설비, 제어반, 계측 기기 등의 시공에 대한 사항을 규정한다.
- (2) 이 시방서의 규정은 계약에 따라 수행될 공사의 완성 및 공사기간 중 유지관리와 하자보수 등에 모두 적용된다.
- (3) 공사시행에 있어 계약당사자간의 권리와 의무를 규정한 계약문서는 상호 보완의 효력을 지난다.
- (4) 기타 사항은 이 시방서 "KCS 57 90 05 상수도 전기공사 일반사항"에 따른다.

1.2 참고기준

이 시방서에 따라 공급되는 기자재의 표준규격은 부속품 또는 완제품을 막론하고 한 국산업표준(KS) 또는 한국수도협회규격(KWWA)을 우선 적용한다. 단, 해당 KS 또는 KWWA에 없거나 설비 성능 유지보수에 필요한 경우는 강화된 외국규격 또는 기타규 격, 각종 기준을 적용할 수 있다.

• ITU : International Telecommunication Union

• ANSI : American National Standards Institute

• JIS : Japanese Industrial Standards

• IEEE : Institute of Electrical & Electronics Engineers

• ISO : International Standardization Organization

NEMA : National Electrical Manufactures Association

• IEC : International Electrotechnical Commission

• ASTM : American Society for Testing & Materials

• ISA : International Society of America

• JEM : Japanese Electrical and Machinery Standards

• UL : Underwriters Laboratories

• 정보통신기본법 동시행령 및 동시행 규칙

• 정보통신공사업법 동시행령 및 동시행 규칙

• 정보통신설비 기술기준에 관한 규칙 및 관계법규

• 전기설비 기술기준 기준령

• 한국 산업규격

• 전기용품 안전관리법

• 상수도 시설기준

1.3 용어의 정의

1.3.1 일반사항

별도의 명기가 없는 한 이 시방서 "KCS 57 90 05 상수도 전기공사 1.3 용어의 정의"에 따른다.

1.3.2 전문용어

- (1) 별도의 명기가 없는 한 이 시방서 "KCS 57 90 05 상수도 전기공사 1.3 용어의 정의"에 따른 다
- (2) 오차 : 참값과 측정값 사이의 차로 절대오차와 백분율 오차로 나타낼 수 있다.
- (3) 정확도 : 측정 기기가 나타내는 값 또는 측정 결과의 정확함과 정밀도를 포함한 종합적인 판단 기준이다.
- (4) 직선성: 교정 곡선과 이에 가장 가깝게 한 근사직선과의 편차로 나타내어지는 근접의 정도를 말한다
- (5) 반복성: 측정 대상을 동일 측정 방법 및 조건으로 비교적 짧은 시간에에 반복 측정한 경우에 각각의 측정값이 일치하는 성질 또는 정도를 말한다.
- (6) 재현성 : 측정 대상을 동일 방법으로 측정하고 측정원, 장소, 기간 등의 일부 또는 전체를 변경 하여 측정한 경우 측정값이 일치하는 성질 또는 정도를 말한다.
- (7) 공차: 근사값에 대한 오차의 한계 범위로 도량형기의 법정표준과 실제와의 차로 법률로 인정하는 오차 범위를 말한다.
- (8) 히스테리시스 : 주어진 입력값의 측정 방향에 의존하여 입력 신호에 대응하는 출력값이 다를 경우의 기기의 특성을 말한다.
- (9) 안정성: 시간 경과에 따라 지시값의 변화 정도를 시간안정도라 하며, 안정상태에 도달한 후시간 경과에 따라 지시값의 변동을 표시하는 정상안정도와 계측기가 동작하여 정상상태에 도달할 때까지의 변동을 표시하는 과도안정도가 있다.

1.4 계측제어설비의 기본 요건

시공자는 설치 목적에 부합하는 시스템이 도입되도록 하기 위해서 다음 조건을 충분히 반영하여야 한다.

1.4.1 사전 조사 및 관련 공종 협의

계측제어시스템의 설치는 그 설치 목적을 명확히 하고 대상 시설의 규모 및 특성(유량, 수압, 수질 등)의 적합성에 대한 면밀한 사전조사 및 타 공종에 대한 연계성과 시스템의 운용관리 측면에 관한 사항을 충분히 검토, 반영하여야 한다.

1.4.2 확장성 및 호환성

상수도 시설은 시설의 확장성, 유동성 및 개량 보수 등의 요소가 크므로 이에 대비하여 계측제어 시스템도 확장 및 변경이 용이하도록 설계되어야 되며, 여러 제작사의 각종 설비와도 하드웨어 및 소프트웨어적으로 호환성이 확보되도록 개방형 구조이어야한다.

1.4.3 감시 · 조작의 용이성

감시기능의 향상을 위해 시설전반을 감시하는 동시에 부분적, 지역적으로 설비 및 시설의 세부관리가 가능하여야 하며, 조작 기능의 향상을 위해서는 오조작이 없이 용이한 조작이 가능하여야 하며 상수도시설의 효율적 관리를 위해 관련 시설을 종합적으로 감시·제어가 가능하여야 한다.

1.4.4 신뢰성 확보 및 안전대책

시설의 일부에 고장이 발생하더라도 전체시설이 작동불능 상태를 초래하지 않는 구조이어야 하며, 모든 기기는 고 신뢰도의 제품으로, 서지, EMI, 전자 및 정전유도 등 각종 에러 발생 요소로부터 보호될 수 있는 안정 대책도 강구되어야 한다.

1.4.5 자동화 운전지향

상수도시설이 점차 대규모, 복잡화 되면서 많은 사업장 및 시설물 관리 · 운영하는데 소요되는 인력의 효율적, 경제적 관리방안의 하나로서 본 계측제어 시스템의 도입을 통한 가능한 자동화 운전이 이루어질 수 있도록 계획, 설계되어야 하며, 이에 필요한 제반 기술적 능력을 확보하여야 한다.

1.4.6 최신 기술의 도입 및 유지보수 대책

시스템 설계·제조 시 가급적 최신 기술을 이용한 설비를 선정함으로서 장기간 안정된 상태로 성능보장은 물론 운영 및 유지보수가 용이하도록 하며, 제반 하드웨어 및 소프트웨어 관련 자료 및 유지보수 기술의 충분한 습득과 예비자재 및 공기구등에 대한 장기적인 수급대책이 강구되어 정상적인 운용관리에 문제가 없도록 하여야 한다.

1.4.7 인간공학적 배려

시스템은 운용 및 관리자에게 편리성 및 이용성을 제고시키고 주변 환경에 조화된 환경 친화적 개념 도입과 법적 규제에 대한 대응 그리고 공해방지 및 예방차원의 설계 개념이 시스템의 제조·설치 시 반영되어야 한다.

1.5 공공에 대한 책임 및 의무

이 시방서 "KCS 57 90 05 상수도 전기공사 1.4 공공에 대한 책임 및 의무"에 따른다.

1.6 재산 및 인명에 대한 책임

이 시방서 "KCS 57 90 05 상수도 전기공사 1.5 재산 및 인명에 대한 책임"에 따른다.

1.7 교통 및 인접재산의 간섭

이 시방서 "KCS 57 90 05 상수도 전기공사 1.6 교통 및 인접재산의 간섭"에 따른다.

1.8 제출물

이 시방서 "KCS 57 90 05 상수도 전기공사 1.7 제출물"에 따른다.

1.9 품질보증

이 시방서 "KCS 57 90 05 상수도 전기공사 1.8 품질보증"에 따른다.

1.10 포장, 유반 및 보관

이 시방서 "KCS 57 90 05 상수도 전기공사 1.9 포장, 운반 및 보관"에 따른다.

1.11 타 공정과의 협력 작업

이 시방서 "KCS 57 90 05 상수도 전기공사 1.10 타 공정과의 협력 작업"에 따른다.

1.12 운영자 교육

- (1) 교육은 최소 3주전에 교육의 범위 및 수준, 교육내용에 대하여 공사감독자(건설사업관리자)와 협의를 거쳐 계획되어야 한다.
- (2) 시공자는 관리인원 등 교육대상자 모두에게는 교육자료를 제공하여야 한다.

2. 자재

내용 없음.

3. 시공

3.1 일반사항

다음에 명시하지 않은 세부적인 사항은 각 공종별 시방서 시공 기준을 따른다.

- (1) 이 장은 기자재 설치 및 배관 배선의 설치에 대해 적용한다.
- (2) 모든 기기는 도면과 현장여건을 확인하고서 적정한 위치에 표시작업을 한 후 설치위치를 결정한다.
- (3) 도면과 불일치하거나, 시공상 원 설계 내용대로 시공하기 어려울 경우에는 공사감독자(건설 사업관리자)와 협의하고, 변경 승인을 득한 후 시공한다.
- (4) 공사 공정은 기계 및 전기공사 등 타 공정과 연계될 수 있도록 하여야 하며, 특히 전기공사와 적절한 연계를 통한 동력선이 누락되는 일이 없도록 하여야 한다.

3.2 설치

3.2.1 일반사항

- (1) 기타 타 공정에 따라 공급하는 기기(전기, 기계 등)를 포함한 모든 계기는 이 시방서와 공사감 독자(건설사업관리자)의 지시에 따라 설치하여야 한다.
- (2) 기자재의 설치 및 전체 설비의 상호 연결하는 경우 다른 공사에 장애가 없도록 하여야 하며,

사전에 충분한 기술적인 제반 계획을 수립하여 수행하여야 한다.

- (3) 시공자는 중앙 또는 현장의 관련 기자재간의 상호 연결을 위한 배선에 대하여 충분한 사전 계획을 수립하고, 기자재 설치 상 필요한 모든 기술 자료를 제출하여 배관 배선 공사계획과의 일치 여부를 확인 받아야 하며, 문제 발생 시에는 공사감독자(건설사업관리자)의 지시에 따라 필요한 제반 조치를 취하여야 한다.
- (4) 계측제어 설비의 설치 위치 및 선로의 경로는 관련공사(토목, 건축, 기계, 전기 등)와 함께 협의하여 사전에 결정하여야 하며 공사감독자(건설사업관리자)의 승인을 받아야 한다.

3.2.2 기자재 반입

기기의 현장 반입 및 설치 시 기기 본체 또는 구조물에 손상을 주지 않도록 해야 하며, 특히 아래의 사항에 유의하여야 한다.

- (1) 반입은 가능한 한 설치 장소까지 포장된 상태로 반입하여야 한다.
- (2) 하차, 운반 및 포장 해체 시는 강한 진동이나 충격을 주어서는 안된다.
- (3) 기자재의 반입은 현장 사진 답사를 통하여 반입 경로를 계획하여 반입 시 차질이 생기지 않도록 하여야 한다.

3.2.3 기기위치

- (1) 배선과 케이블 경로는 기기의 구조, 조건, 간섭 여부, 전기 종단 위치에 따라 결정하여야 하며, 운전과 유지관리상 접근이 용이한 곳에 설치하도록 하여야 한다.
- (2) 현장 여건상 위치나 배치의 합리적 변경이 필요하거나 공사감독자(건설사업관리자)가 기기 위치 변경을 요구하는 경우 시공자는 이에 대한 조치를 하여야 한다.
- (3) 기기 위치는 직사광선을 받지 않는 곳을 선정하여야 하며, 조명 관계를 충분히 고려하여야 한다.
- (4) 기기 기초가 콘트리트일 경우 콘크리트 타설시 anchor bolt의 구멍을 확보하여야 한다.
- (5) 습기, 부식성 가스, 가연성가스, 진동, 침수 등의 위험이 없는 장소를 선택하여야 한다. 부득이 상기의 악조건 하에서도 기기 설치를 하지 않으면 안 될 경우, 공사감독자(건설사업관리자)와 협의하여 보완대책을 강구하여야 한다.

3.2.4 기기 기초

- (1) 콘크리트 slab상에 설치하는 경우 바닥 면의 방수 공사에 유의하여 시행하여야 하며, 콘크리트 기초의 크기는 계측기기에 적합하여야 하며, 자립형 패널의 경우 각 면의 길이보다 길게하고 높이는 도면의 내용에 따라 바닥면보다 높아야 한다.
- (2) 또한 지중 기초의 경우 설계 도면에 따라 시공하여야 한다. 특히 기기의 바닥 기초는 신중히 하고 수평 수직에 충분히 유의하여 기기 설치 후 수납기기의 성능에 지장을 초래하는 일이 없도록 시공하여야 한다.

3.2.5 기기의 고정

모든 계기, 제어반 및 기기는 현장조건에 적합한 방식으로 고정시켜야 한다.

3.2.6 기존 계측제어 장치

시공자는 기존의 계측제어장치를 재 설치하는 경우에 기존 계기를 깨끗이 청소하고

설치 후 재조정 및 보정하여야 한다.

3.2.7 보조장치

- (1) 시공자는 특수한 경우의 보조장치 설치와 접속에 대하여 공사감독자(건설사업관리자)와 협의 후 설치하여야 한다.
- (2) 설치방법을 포함한 추가 내용의 변경서류를 시공전에 공사감독자(건설사업관리자)에게 제출하여 승인을 받아야 한다.

3.2.8 설치기준

시공자는 모든 현장설치 구성품과 조립품을 아래조건에 따라 설치 연결토록 하여야 한다.

- (1) 신호 및 제어 선로(process sensing line)는 배관에 따라 설치하여야 한다.
- (2) 각 배관은 평형으로 지지 표면과 가깝게 설치하여야 하며, 지지대를 설치하여야 한다.
- (3) 곡부는 변형이나 배관 두께가 얇아지지 않도록 적절한 공구를 사용하여 형성하여야 하며, 플라스틱 배관은 플라스틱 클립 등을 사용하여 평행이 유지되도록 하여야 한다.
- (4) 배관 선단은 직각으로 절단하고 이형관에 삽입하기 전에 청소를 하여야 한다.
- (5) 모든 신축케이블(flexible cable)과 모세관 배관(capillary tubing)은 신축 덕트(flexible conduct) 내에 설치하여야 하며, 기기 정비시 각 소자를 인출하기에 충분하여야 한다.
- (6) 동력 및 신호 배선은 클램프형 러그로 종단 시켜야 한다.
- (7) 배선에는 영구적으로 식별이 가능한 꼬리표를 부착시켜야 한다.
- (8) 배선과 케이블은 보기 좋게 배치하고 그룹으로 견고히 지지시켜야 하며, 공사감독자(건설사업관리자)의 별도승인이 없는 한 이음부위 없이 단말과 단말을 연결하여야 한다.
- (9) 전원과 신호연결의 극성을 포함한 설치의 정확성을 입증하고 모든 공정 연결에 누락이 없음을 확인하여야 하고 시공자는 검사한 회로나 계통의 모든 결함이 시정되었음을 확인시켜야 한다.

3.3 교육

3.3.1 일반사항

- (1) 시공자는 운전원 및 운영자를 대상으로 시방서에 따라 공급한 모든 계기의 정비, 보정 및 보수에 대하여 교육을 실시하여야 한다.
- (2) 교육은 기기 제작자의 전문가가 실시하여야하며 특정 기기별로 하여야 한다.
- (3) 각 교육 과정에는 이론, 원리, 정비, 고장해결, 보수 및 보정을 포함시켜야 한다.
- (4) 교육은 사업의 예비 시운전 착수 전에는 실시하여야 하며, 공사감독자(건설사업관리자)는 교육계획을 검토하고 의견서를 첨부할 수 있다.
- (5) 교육 내용은 운용, 유지보수절차, 고장수리에 필요한 시험기구, 설정치 변경, 보정내용 등이 포함되어야 한다.
- (6) 과정 완료 후 시공자는 교육 훈련 결과를 제출하여야 한다.

3.3.2 현장 시운전 및 기술 교육

(1) 시운전은 시공자(제작자) 및 공사감독자(건설사업관리자) 입회하에 실시하여야 한다.

- (2) 계약 상 다른 곳에서 언급한 사항을 제외하고는 시운전에 대한 세부계획을 작업일전에 공사 감독자(건설사업관리자)에게 제출하여 공사감독자(건설사업관리자)의 승인을 득한 후 시운 전을 실시하여야 한다.
- (3) 시공자는 설비 미 운영 상태에서 시운전을 실시하여야 하며, 시험 완료 후 시험 결과보고서를 제출하여야 하다.
- (4) 시공자는 설비 운영 상태에서 종합시운전을 실시하여야 하며, 본 설비와 관련된 타 설비와의 종합적인 시운전을 포함하여 총괄적인 기능을 이룰 수 있게 하여야 한다.
- (5) 검사 및 시운전시 공사감독자(건설사업관리자)로 부터 지적된 사항에 대하여는 즉시 시정조 치하고 재검사를 받아야 한다.
- (6) 시공자는 본 제품의 설치 기간 동안 시공자의 부담으로 모든 책임을 질 수 있는 상급 기술지 도원을 현장에 주재시켜, 설치에 필요한 기술지도와 설치 완료 후 현장 시운전에 대한 계약 일정 이상 시운전 기술지도, 교육지도를 하여야 한다.

3.3.3 운영자 및 유지관리자 교육

- (1) 시공자는 공사 기간 동안 제공되는 모든 설비에 대해서 모든 기술 및 사용방법 등을 운영자에 게 제공 및 운영자 교육을 실시하여야 한다.
- (2) 시공자는 시설물 인계 시 기술자 1인을 상주시켜 시설물 관리담당자에게 충분한 교육을 시킨후 공사감독자(건설사업관리자)로 부터 정상운전 확인을 받아야 한다.
- (3) 시공자는 주요설비에 대한 사용설명서를 눈에 잘 보이는 곳에 비치하여야 한다.
- (4) 시공자는 교육인원, 기간 및 장소 등을 명기한 계약 내용에 의거 운영자 및 유지관리자 교육을 실시하여야 한다.

3.4 시험 및 검사

검사는 제작자 공장검사 및 현장에서 실시하는 현장검사로 나누어 실시하여야 한다. 공장검사는 각 장비 및 계기의 각각에 대한 검사와 시스템별 종합 시험을 실시하여야 한며, 현장검사는 기기 검사, 설치검사 및 시운전을 포함하여야 한다. 또한, 계약 상대자는 기자재 공장검사 및 현장검사에 필요한 계측기 및 제반공구를 사전에 준비하여야 하고, 시험 및 검사 전에 한글 또는 영문으로 작성된 시험 및 검사 LIST와 기준을 공사감독자(건설사업관리자)에게 제출하여야 한다.

3.4.1 외관, 구조, 규격 및 설치검사

제품의 외관상태, 규격, 구조 및 설치상태를 검사하여야 한다.

3.4.2 전기적 특성시험

- (1) 절연저항 시험
- (2) 내전압 시험
- (3) 입출력 시험: 규정된 전압계 및 전원 분배기는 출력이나 전원단자에 연결하여 시험

3.4.3 동작 시험

제품의 각 모델과 형태에 따라 제시된 기준에 의거 성능 및 동작 상태를 검사하여야 한다.

3.4.4 특별 시험

제품의 각 모델과 형태에 따라 제시된 기준에 의거 재질의 성능 및 동작 상태를 검사하여야 하며, 필요한 경우 비파괴검사 및 압력 누수검사를 하여야 한다.

3.4.5 보정

- (1) 시공자는 이 시방서에 따라 공급하는 모든 장치를 제작자가 추천하는 절차에 따라 보정하여 기능과 공차 한계를 충족시킨다는 것을 검증하여야 한다.
- (2) 보정점(calibration point) : 각 계기는 시험계기를 사용하여 스팬의 25, 50, 75 및 100%로 입력 시뮬레이터로 보정시킨다.
- (3) 기준보정(bench calibration) : 기준보정을 한 계기는 현장에서 시험하여 보정값의 조절여부를 결정하고, 보정조절은 공사감독자(건설사업관리자)와 협의 후 시행하여야 한다.
- (4) 현장보정(field calibration) : 기준 보정을 하지 않고 현장에서 보정하는 계기는 루프 다이아 그람이나 시방자료에 따라 적정하게 작동하는지 확인하여야 한다.
- (5) 분석기 보정(analyzer calibration) : 설치 후 제작자 또는 제작자 대리인은 각 분석기 계통을 보정하고 시험하여야 한다. 보정에 필요한 모든 시료는 제작자가 공급하여야 한다.
- (6) 보정표(calibration sheet): 각 계기의 보정표에는 다음 사항을 기재하여야 한다.
 - ①사업명(project name)
 - ② 회로번호(loop no)
 - ③TAG 번호(tag no)
 - ④ 제작자(manufacturer)
 - ⑤모델번호(model no)
 - ⑥ 일련번호(serial no)
 - ⑦보정범위(calibration range)
 - ⑧보정자료(calibration data) : 입력·출력 및 스팬의 10, 50, 90%에서의 오차
 - ⑨사용 시험기기 및 일련번호

3.4.6 시험 및 검사의 대체

전문업체의 기기를 구입, 조립하는 경우 해당 기기의 장치별 공장시험은 공인기관 시험성적서로 대체할 수 있다. 단, 무정전 전원장치, 자동 전압조정기, 충전기에 한하여 아래와 같이 공인기관의 인증을 획득한 경우에는 이를 면제할 수 있다.

- (1) 공업표준화법에 의한 한국산업 규격표시품인 경우
- (2) 공산품 품질관리법에 의한 품질등급을 획득한 제품인 경우
- (3) 전기공사법 및 전기통신공사업법에 의한 전기통신자재 형식승인을 필한 경우

3.4.7 배관배선 검사

- (1) 사용재료
- (2) 전선간 상호 및 피팅류와의 접속, 지지방법 및 간격
- (3) 전선관의 구부림, 관말단의 전선보호 여부
- (4) 전선관의 치수와 들어있는 배선 수

- (5) 계기류의 내부에 빗물이 침입하거나 호흡작용에 의하여 물방울이 침입하는 것을 방지하도록 단말처리 여부
- (6) 전선관 피팅류의 뚜껑 조임 여부
- (7) 전선관이 process의 고온배관이나 가열로 등의 고온 부에 인접되고 있지 않은가 또는 보온대의 가운데에 묻혀 있는지 여부
- (8) 케이블 피트나 덕트내의 케이블 정지여부
- (9) 실드 케이블의 실드를 규정대로 처리여부
- (10) 케이블 번호 기입 여부

3.4.8 케이블 시험

- (1) 도통시험
- (2) 절연 측정
 - ①케이블 금속관 간
 - ②케이블 실드 간
 - ③케이블 대지 간
 - ④실드 대지 간

3.4.9 접지공사

- (1) 접지 매설표식의 건립여부
- (2) 접지선의 색상구분(녹색)
- (3) 각 기기의 접지상태
- (4) 접지저항 측정

3.4.10 기타

작업 완료후 다음사항을 확인하여야 한다.

- (1) 작업을 위한 가설물 등 불량품의 제거여부
- (2) 설치개소에 기계공구 및 불필요한 재료 존재여부
- (3) 계측 기기 및 기타의 손상여부
- (4) 뒷정리 및 청소상태